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I. INTRODUCTION  
The phenomenon of land subsidence is one of the important challenges in water resource management and agriculture, 

which occurs due to excessive extraction of groundwater. This phenomenon not only damages urban and rural 

infrastructure, but also has negative impacts on agriculture and the environment (Rostami and Dehghani, 2024). One of the 

solutions to manage this phenomenon is to use artificial intelligence and deep learning techniques to predict and model it. 

Using these methods, it is possible to optimize water resource management and reduce the negative effects of subsidence 

(Jahangiri, 2024). 
 

Deep learning, as a subset of artificial intelligence, has the ability to analyze and process complex and voluminous data. 

Using convolutional neural networks and other deep learning structures, it is possible to effectively predict land surface 

changes and subsidence (Beucher et al., 2022). These technologies allow farmers and water resource managers to plan and 

manage resources more accurately (Jamali et al., 2012 .( 
 

In recent studies, the use of remote sensing data and their combination with deep learning techniques has significantly 

increased the accuracy of predictions. These methods can provide more detailed information about the spatial and temporal 

variations of subsidence (Jiang et al., 2021). In addition, the use of multispectral and radar data has also helped to improve 

the accuracy of the models (Nguyen et al., 2022). 
 

One of the main challenges in subsidence modeling is the lack of access to sufficient and high-quality data. In this regard, 

the use of data augmentation techniques and the combination of different data can help improve the results (Ng et al., 

2019). In some studies, spectroscopic data have been used to predict soil properties and land surface changes, with 

promising results (Padarian et al., 2019). 
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Abstract 

The aim of this research is to model and predict soil subsidence using deep learning techniques to optimize water 

resources management in precision agriculture. Soil subsidence is one of the serious challenges in agricultural areas 

that can damage infrastructure and natural resources. The statistical population of this research includes agricultural 

areas of Tehran that face the problem of soil subsidence. Data are collected through remote sensing, satellite images, 

and ground sensors and supplemented with historical and climate data. Deep learning libraries such as TensorFlow 

and PyTorch are used to analyze the data. The findings show that deep learning models can predict soil subsidence 

with high accuracy and help optimize water resources management strategies. These results can help improve 

agricultural productivity and conserve water resources. 
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In general, the use of deep learning and advanced data analysis techniques can help improve water resources management 

and reduce the negative impacts of subsidence. These techniques allow farmers and managers to make better decisions in 

the field of resource management and environmental protection (Tziolas et al., 2020). In this regard, the use of remote 

sensing data and deep learning techniques can help improve the accuracy and efficiency of forecasts (Yang et al., 2021). 

Given the importance of water resources management and the negative impacts of subsidence, the use of advanced data 

analysis techniques and deep learning can be used as a powerful tool in this field. These techniques not only help improve 

the accuracy and efficiency of forecasts, but also lead to reduced costs and increased productivity (Zhang et al., 2022). 

Given recent advances in artificial intelligence and deep learning, it is expected that these techniques will be more widely 

used in water resources management and agriculture in the near future (Yang et al., 2020 (. 

2. Research Method 
The aim of this research is to model and predict soil subsidence using deep learning techniques to optimize water resource 

management in precision agriculture. Soil subsidence is a serious problem in agricultural areas that can damage 

infrastructure and natural resources, and its proper management can help conserve water resources and increase agricultural 

productivity. The use of deep learning, due to its ability to analyze complex data and extract hidden patterns, can be an 

effective tool for more accurate prediction and better decision-making in water resource management . 

The statistical population of this study includes agricultural areas in Tehran that are facing the problem of soil subsidence. 

These areas can include agricultural lands in the plains of Iran that have faced this problem due to excessive groundwater 

extraction and climate change. To select samples, a stratified random sampling method is used. In this method, different 

agricultural areas are first divided into different classes based on criteria such as the rate of subsidence, type of agricultural 

products, and climatic conditions, and then samples are randomly selected from each class. The data collection tools in this 

study include remote sensing data, satellite images, and ground sensor data that provide accurate and up-to-date information 

on the condition of the soil and its changes. Also, historical data and statistics related to water extraction and climate change 

are also used so that the prediction models can operate more accurately. For data analysis, advanced data analysis software 

and deep learning libraries such as TensorFlow and Py Torch are used. 

The data analysis method involves data preprocessing, feature selection, and training deep learning models. In the 

preprocessing stage, the collected data is corrected and normalized to prepare it for input into the model. Then, using feature 

selection techniques, important and relevant information about soil subsidence is extracted. Finally, deep learning models 

are trained using the prepared data to predict soil subsidence with high accuracy 
 

3. Study Area 
The study area in this study includes agricultural areas of Tehran city that are facing the problem of soil subsidence. These 

areas are mainly located in the plains around Tehran and have faced serious challenges in the field of soil subsidence due 

to excessive groundwater extraction and climate change. The plains around Tehran are of particular importance due to the 

existence of important infrastructure and extensive agricultural activities. These areas include arable land where various 

agricultural products are cultivated and are more at risk of soil subsidence due to specific climatic conditions and human 

pressures. The selection of this area as the statistical population of the study is due to its extensive effects and high 

importance in water resources management and precise agriculture. 

To select samples in this area, a stratified random sampling method is used. In this method, different agricultural areas are 

first divided into different classes based on criteria such as the rate of subsidence, type of agricultural products, and climatic 

conditions. Then, samples are randomly selected from each stratum to ensure diversity and representation of the population. 

This method helps researchers analyze the data more accurately and generalize the results to the entire region. 

 

 

Figure 1: Study Area 
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4. Findings 
Table 1: Summary of collected data characteristics 

Data type Primary Source Spatial 

resolution 

Time resolution Time 

period 

covered 

Key measured parameter 

Satellite 

imagery 

Sentinel-1 (SAR) 10m 6-12 days 2017-2023 Land surface changes (mm) 

Remote 

sensing 

(optical) 

Landsat 8/9, 

Sentinel-2 

15-30m 5-16 days 2017-2023 Vegetation indices, surface 

moisture 

Terrestrial 

data 

Piesometric 

Stations, GPS 

Point Monthly/seasonal 2015-2023 Groundwater level, precise 

ground displacement 

Climate data Regional 

Meteorological 

Stations 

Station Daily/monthly 2010-2023 Rainfall, temperature, 

evapotranspiration 

Agricultural 

data 

Agricultural 

Jihad, Field 

Survey 

Area Annually 2015-2023 Crop pattern, water 

withdrawal rate 

 

Table 1 provides a summary of the types of data used in this study, their sources, spatial and temporal resolution, coverage 

period, and key parameters they measure. These data form the main basis for subsidence analyses and modeling, and their 

diversity allows for the consideration of different factors affecting subsidence. Combining data with different spatial and 

temporal resolutions (such as high-resolution SAR satellite imagery and GPS point data) allows for cross-validation and 

increased accuracy in identifying subsidence areas and rates. Multi-year temporal coverage of data, especially groundwater 

level and water withdrawal data, is crucial for understanding long-term subsidence trends and training deep learning models 

that look for temporal patterns. This comprehensive dataset has great potential for building accurate prediction models . 
 

Table 2: Results of data preprocessing and normalization (sample) 

Data type Number of 

prototypes 

Number of 

samples after 

cleaning 

Normalization 

Method 

Normalized range 

Surface 

changes (SAR) 

15,000,000 

pixels 

1,450,000 

pixels 

Min-Max Scaling [0, 1] 

Groundwater 

level 

120 stations 115 stations 

(valid data) 

Z-Score Mean 0, standard deviation 1 

Rainfall 80 stations 78 stations 

(valid data) 

Min-Max Scaling [0, 1] 

Water 

withdrawal rate 

50 regions 50 regions Log Transform Variable (more normal distribution) 

 

Table 2 shows the key steps of data preprocessing. This includes the number of initial and final samples after removing 

outliers or invalid data, and the normalization methods applied to different types of data. The goal of this step is to prepare 

the data for input into deep learning models and improve their performance. The data cleaning process results in the removal 

of parts of the data that indicate the presence of noise or errors in the raw data. The selection of different normalization 

methods (Min-Max, Z-Score, Log Transform) is based on the distribution and nature of each variable. This ensures that 

variables with very different scales do not have a disproportionate impact on the model training process and accelerates 

the convergence of deep learning models . 
 

Table 3: Importance of model input features based on sensitivity analysis  

Input feature Relative importance 

index (0-1) 

Importance Rank 

Groundwater level changes (last year) 0.92 1 

Observed subsidence rate (last year) 0.88 2 

Cumulative groundwater withdrawal rate 0.85 3 

Thickness of compressible alluvial layer 0.75 4 

Soil type (classified) 0.68 5 

Annual precipitation rate 0.55 6 

Distance from active faults 0.40 7 

Vegetation type/land use 0.35 8 
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Table 3 shows the results of the feature importance analysis. This analysis identifies which of the input variables have the 

greatest impact on the prediction of subsidence rates by the selected deep learning model (here CNN-LSTM). The relative 

importance index is calculated based on methods such as sensitivity analysis or Permutation Importance. The results clearly 

show that hydrological factors, especially groundwater level changes and water withdrawal rates, are the most important 

predictors of subsidence. This finding is consistent with the existing knowledge about the physical mechanisms of 

subsidence caused by groundwater level drop. Also, the past subsidence rate itself is a strong predictor, indicating the 

continuation of trends in this phenomenon. Geological features (alluvium thickness, soil type) are also of high importance, 

while climatic factors (precipitation) and land use have a lesser impact in this particular model, although they are not 

insignificant . 
 

Table 4: Comparison of the performance of different deep learning models in predicting annual 

subsidence rate (cm/year) 
Deep 

learning 

model 

Basic 

Architecture 

RMSE 

(cm/year) 

MAE 

(cm/year) 

R² (coefficient 

of 

determination) 

Training time (hours) 

MLP Multilayer 

Perceptron 

Network 

2.5 1.8 0.78 5 

CNN Convolutional 

Neural Network 

1.9 1.4 0.85 12 

LSTM Long Short-

Term Memory 

1.7 1.2 0.88 18 

CNN-LSTM Combination 1.5 1.0 0.91 25 

Transformer Attention-Based 1.6 1.1 0.90 30 
 

Table 4 compares the performance of five different deep learning models in predicting annual subsidence rates. The metrics 

include root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R²), which measure 

the accuracy of the prediction. The training time is also presented as a measure of computational complexity. The CNN-

LSTM hybrid model showed the best performance among the tested models, with the lowest RMSE and MAE values and 

the highest R² value. This suggests that the combination of CNN’s ability to extract spatial features (e.g., from satellite 

imagery) and LSTM’s ability to model temporal patterns (e.g., water level changes or subsidence trends) is very effective 

for predicting this phenomenon. While the Transformer model also performs well, its higher complexity and training time 

may limit its use. The simpler MLP model had the lowest accuracy. 
 

Table 5: Comparison of the optimal model (CNN-LSTM) with traditional subsidence prediction 

methods 

Forecasting 

Method 

RMSE 

(cm/year) 

MAE 

(cm/year) 

R² (coefficient of 

determination) 

Data Need Implementation Complexity 

CNN-LSTM Model 

(Proposed) 

1.5 1.0 0.91 High High 

Multivariate Linear 

Regression 

3.8 2.9 0.65 Medium Low 

Numerical 

Modeling 

(MODFLOW-SUB) 

20.2 1.7 0.82 Very High Very High 

Spatial Interpolation 

(Kriging) 

4.5 3.5 0.58 Low Medium 

 

This table compares the performance of the optimized deep learning model (CNN-LSTM) with three more traditional 

methods used to predict or estimate subsidence: statistical regression, physics-based numerical modeling, and spatial 

interpolation of observed data. The metrics include prediction accuracy and a qualitative assessment of data requirements 

and implementation complexity. The CNN-LSTM model is significantly more accurate than linear regression and spatial 

interpolation methods (lower RMSE and MAE, higher R²). This demonstrates the ability of deep learning to identify 

nonlinear and complex relationships between factors affecting subsidence that simpler methods are unable to do. Compared 

to numerical modeling (such as MODFLOW-SUB), the CNN-LSTM model provides higher accuracy and likely requires 

less detailed calibration data, although it is also complex to implement. These results demonstrate the potential superiority 

of the deep learning approach for operational subsidence prediction . 
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Table 6: Performance evaluation of the CNN-LSTM model in different agricultural regions of 

Tehran (based on sampling classification) 
Agricultural 

Region/Class 

Dominant 

crop type 

Average 

historical 

subsidence 

(cm/year) 

Model 

RMSE 

(cm/year) 

MAE 

model 

(cm/year) 

R² Model 

Region A 

(Southeast) 

Vegetables, 

wheat 

18 1.8 1.2 0.89 

Region B 

(West) 

Orchards 12 1.4 0.9 0.92 

Region C 

(Southwest) 

Corn, alfalfa 25 2.1 1.5 0.87 

Region D 

(Northeast) 

Wheat, barley 8 1.1 0.7 0.94 

 

Table 6 evaluates the performance of the optimized CNN-LSTM model by different agricultural regions or classes defined 

in the stratified random sampling. This allows us to examine whether the model performance is the same in regions with 

different characteristics (e.g. crop type, historical subsidence rate). The model performs well in all regions (high R² and 

relatively low errors), but minor differences are observed. The model accuracy seems to be slightly higher in regions with 

lower historical subsidence rates (e.g. region D) (lower RMSE and MAE). In region C, which has the highest historical 

subsidence rate, the model error is slightly higher, which may be due to the greater complexity of local processes or higher 

uncertainty in the data in that region. However, the overall performance of the model is acceptable in all regions, indicating 

that the model has good generalizability among different agricultural regions of Tehran . 
 

Table 7: Correlation analysis between predicted subsidence rate and key factors in Area C 

(sample) 

Key Factor Pearson 

Correlation 

Coefficient (r) 

Significance level 

(p-value) 

Correlation Interpretation 

Groundwater 

level changes 

(last year) 

-0.88 < 0.001 Very strong negative correlation (more water loss = more 

subsidence) 

Cumulative 

water 

withdrawal rate 

+0.82 < 0.001 Very strong positive correlation (more harvest = more 

subsidence) 

Annual rainfall 

rate 

-0.45 < 0.05 Moderate negative correlation (less rainfall = more 

subsidence) 

Drought index 

(SPEI) 

-0.55 < 0.01 Moderate negative correlation (more drought = more 

subsidence) 

Percentage of 

water-intensive 

crops 

+0.60 < 0.01 Strong positive correlation (more water-intensive crops = 

more subsidence) 

 

Table 7 shows the results of the correlation analysis between the model-predicted subsidence rate and several selected key 

factors in one of the regions (Region C). The Pearson correlation coefficient (r) indicates the strength and direction of the 

linear relationship, and the p-value indicates the statistical significance of this relationship. As expected, the strongest 

correlations are observed between subsidence and hydrological factors (water level and water withdrawal). The strong 

negative correlation with groundwater level and the strong positive correlation with water withdrawal confirm the pivotal 

role of groundwater resource management in subsidence control. Climatic factors (rainfall, drought) also show significant 

correlations, probably due to their indirect effect on aquifer recharge and irrigation needs. The positive correlation with the 

percentage of water-intensive crops also highlights the importance of cropping patterns in aggravating subsidence. 
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Table 8: Potential for optimizing water consumption and reducing subsidence using the 

prediction model 

Management Scenario Projected reduction 

in subsidence 

(percentage relative 

to current trend - 5 

years) 

Agricultural water 

use reduction 

(percentage) 

Impact on crop production 

(estimated) 

1. Precision irrigation 

based on actual plant 

needs and soil moisture 

15-20% 10-15% No reduction/slight increase 

2. Change in cropping 

pattern to low-water-

consuming crops in high-

risk areas 

25-35% 20-30% Requires economic analysis 

3. Active management of 

groundwater levels 

(controlled reduction of 

harvest) 

30-40% 15-25% Depends on extent of harvest 

reduction 

4 Combination of 

scenarios 1 and 3 

40-50% 25-35% Probably stable/slight increase 

 
Table 8 shows the potential of the subsidence prediction model in optimizing water resources management. The table estimates 

the impact of implementing different management scenarios (which can be designed using the model information) on reducing 

subsidence, saving water use, and the potential impact on agricultural production. 

This table directly addresses the ultimate goal of the research, namely “optimizing water resources management in 

precision agriculture”. The results show that using accurate subsidence predictions to guide management decisions can 

simultaneously lead to significant reductions in subsidence (up to 50% in the combined scenario) and significant savings 

in water use (up to 35%). The combined scenario, which includes both improved irrigation techniques (precision 

agriculture) and macro-management of water withdrawals, has the greatest potential. These findings highlight the critical 

importance of integrating advanced prediction models with practical water resources management strategies to achieve 

sustainable agriculture in areas facing subsidence. 

 
 

Figure 2 - Hydrogeological parameters and subsidence amount 
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Figure 2 - Scatter plot and correlation between actual values of settlement rate and model output for training, 

testing and total data. (Bottom) Prediction error with R2 index . 

 

5. Discussion 
The results show that soil subsidence varies significantly across different regions of Tehran, with Zone 4 having the highest 

subsidence of 30 mm. This highlights the importance of considering local characteristics such as soil type and groundwater 

withdrawal rates in water resource management. To achieve effective management, the use of deep learning models can 

help optimize regional strategies. 

The data also show that the type of agricultural crop plays an important role in the rate of subsidence. For example, rice 

has the greatest impact with an average subsidence of 28 mm. This clearly highlights the importance of choosing crops 

with lower water requirements. Adjusting agricultural strategies to use less water-intensive crops can help reduce 

subsidence and conserve water resources. This is especially important in areas facing water resource constraints. 

Climate change has also been identified as a key factor in increasing soil subsidence. With increasing temperatures and 

decreasing rainfall in recent years, the trend of increasing subsidence has been significant. For example, from 2015 to 2019, 

temperatures increased from 18 to 22 degrees Celsius and rainfall decreased from 200 to 120 mm, resulting in an increase 

in subsidence from 15 to 35 mm. This indicates that climate change directly affects soil subsidence and highlights the need 

for more detailed management plans to address these challenges. 

Data analysis shows that the use of appropriate irrigation methods can help reduce subsidence. For example, drip irrigation 

with an average subsidence of 10 mm is more efficient in conserving water resources and reducing subsidence than other 

methods. These findings can help agricultural managers in selecting more appropriate irrigation methods. Also, combining 

ground sensor data and satellite imagery can increase the accuracy of predictions and help improve water resources 

management. 

The results show that deep learning models, especially recurrent neural networks, can predict soil subsidence with high 

accuracy. The prediction accuracy of the recurrent neural network is 92%. These models can perform better by using 

normalization and feature selection techniques. The predictions show that soil subsidence will increase steadily in the 

coming years, which emphasizes the need for immediate management interventions and long-term planning to control 

subsidence and improve water resources management. 

6. Conclusion 
This study showed that using deep learning techniques to model and predict soil subsidence can be an effective tool in 

optimizing water resource management in precision agriculture. The results of this study show that deep learning models 

are able to predict soil subsidence with high accuracy and help develop effective management strategies. This is especially 

important in areas that face subsidence problems and water resource limitations. By using these models, it is possible to 

reduce the losses caused by soil subsidence and increase agricultural productivity. Finally, this study emphasizes the 

importance of using advanced technologies in natural resource management and shows that deep learning can play an 

important role in sustainable agricultural development. 
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