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Abstract

In this research article, a hybrid technique with two-step optimization for handling general third-order ordinary
differential equations is derived and implemented. The method was designed with the use of interpolation and a
collocation approach, using power series as the basis function. We investigate the method’s properties, such as order,
convergence, consistency, zero-stability and region of absolute stability. The methods were tested on some third
order ODEs problems and the outcome from the numerical examples showed that the new methods in the study
performed better than those compared with in the literature.
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I. INTRODUCTION

Consider the general third order ordinary differential equations (ODEs) using power series of order seven given of the form
y(t) = ?:o a; t/ (D

Which is recommend as general third order derivative solution of initial value problems of the form

y"() = f(&y.y,y",y(to) = yo,y'(to) = ¥'0,y"(t) = ¥o" @

In particular, third order ordinary differential equations arise in many physical problems such as electromagnetic waves,
thin film flow, and gravity-driven flows. The solution of (2) has been discussed by various researchers among them are:
Dalatu et al. [1] developed a hybrid block method for solving third-order derivative with initial value problems of ordinary
differential equations. Ghadimi [2] developed a multi-step predictor-corrector method for delay differential equations.
Atabo et al. [3] developed a selected single step hybrid block formula for solving third-order ordinary differential equations
with application in thin film flow. Saidu, [4] introduced three members of a one-step optimized third derivative hybrid
block methods family for solving general second-order initial value problems. Raymond ef al. [5] proposed an optimized
half-step scheme third derivative method for testing higher order initial value problems. Soomro et al. [6] developed an
optimized hybrid block Adam method for solving first order ordinary differential equations. Adam block method was
design for the solution of linear and nonlinear first-order initial value problems in ordinary differential equations. Moses
and Akintoye [7] developed an advanced two-step block method that integrates optimization techniques to enhance solution
accuracy for third-order differential equations. Sabo et al. [8] developed the simulation of linear block algorithm for
modelling third order highly stiff problem without reduction to a system of first order ordinary differential equation to
address the weaknesses in reduction method Babatunde [9] proposed optimization strategies in hybrid methods, focusing
on error minimization and enhanced convergence for higher-order ordinary differential equations. Sadiq and Ahmed [10]
introduce a class of two-step hybrid block methods for solving third-order differential equations. The authors optimized
the block method by incorporating error minimization strategies and improving computational efficiency.

The paper was organized as follows: the next section shows the methodological development of the optimized two-step
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method. The basic conditions of the method are analyzed; these are convergence and stability region, numerical
experiments. The effectiveness of the scheme is confirmed on some samples and the result is discussed in Section 3. Section
4 is the conclusion.

2. Derivation of the Methods

To derive the pair of two-step third derivative methods, the finite power series function of the form
— 39 j
y (t) — 4j=0 aj t

2
is used as basis function.
By differentiating equation (2) thrice gives
y"(©) = X3-0j( = DG — Dt/
(€)
Substituting (3) into (1) gives
9
y"() = f(t,y,y,9") = Aob + hA,10'y + K> 1,0, + Zj(j -1 —2)a;t/3
j=0
,i=1..... 3 4
Interpolating (2) and it first and second derivative at f, and collocating (4) at all points
tyy =t, +ah,a= (O,r,v,l,s,u,Z), gives
1 0 0 0 O 0 0 0 0 0 7
01 00 O 0 0 0 0 0
0 01 0 O 0 0 0 0 0
0 00 1 1 1 1 1 1 L IfA1 1 6. 1
1 2 I
0 0 0 O @ @ Q @ @ Q A4 6,
1! 1! 1! 1! 1! 1 {12, 9"
" W? 1* ) W?* @72, "
0 0 0 O - — 3 Un
2! 2! 2! 2! 2! 2! {14, Lnsr
00 0o O W W W@ @7, ®
3! 3! 3! 2! 3! 2! || ¢ Uni1
I (o K CO L DL O L OO LG P
4! 4! 4! 3! 4! 3! || s Hn+u
00 0 0 (> W (1° (5)° W° (2)°|ag]  Litnsz!
5 5 5 5 5 5
"° m° V° ()°* W° (2)°
0000 % %o & & 6 6l

Equation (5) is solved for unknowns by applying the Crammer’s method gives the coefficient
A, ( j= 0(1)9) yield the continuous hybrid scheme which is given by
/13Mn + /14.un+r + AS.u'n+V + /16run+1 +] (6)

A7.“n+s + /18#n+u + A9ﬂn+2
i=0 and Lyis J=0,r,v,1,8,u,2 gives

/13Mn + A4Mn+r + As.un+v + /16#n+1 +] (7)
Azbnys + Aghniu + Aotnyz

yl(t) = /’loenﬂ' + h/‘llglnﬂ + hz/‘lzgunﬂ + h3
The coefficient of &

n+i>

Onsj = AoOn +hA, 0" + H22,0", + [

=1, A=k @:%kz

[ 72k =15k v+ 48k* —45k° +10k° +168k>rs —12k6k’rs + 24k rs +
k| 168k ru =126k ru +168krv + 168k su + 24k ru =126k uv + 24k *uv
10080rsuv | +252k>rsu — 42K Fsu + 252rsv — 42k rsv + 252k ruv — 42k ruv + 252k suv
| —420krsu —420krsv — 420kruv — 420ksuv +1680rsuv + 84k’ rsuv —63 Okrsuv |
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72k%s —84k*s —15k*s — 84k u + 72k’u —84k*v —15k*u
1 k* +72*y —15k* +10k> —126k>su + 24k su —126k>sv +
b 5040r (r =) (r—u)(r=v)(r=1)(r—2)| 24k>sv —126k>uv + 24k’ uv +168ksu +168ksv+168kuv —
420suv — 42k suv + 252ksuv
72k —84k2r —84k>s — 15k r + 72k°s —15k*s —84k*u |
- k> +72k%u —15k*u —45k* +10k° —126k*rs + 24k rs =126
© 50400 (r=v)(s=v)(u—v)(v=1)(v=2)| k’ru+ 24k ru —126k>su + 24k su +168krs +168kru +
| 168ksu —420rsu — A2k*rsu + 252krsu
A8k’ r —15k*r + 48k>s — 15k s + 48k°u —15k*u + 48k v —15k*v
—30k* +10k° — 84k’ uv — 42k rsu — 42k*rsv — 42k *ruv — 42k *suv
+168krsu +168krsv +168kruv +168ksuv — 420rsuv + 84krsuv

Jo = K
" 5040(r—1)(s—1)(u—1)(v—1)

72k — 84k r —15k*r — 84k u + 72k u — 84k*v —15k*u
k* +72k*v —15k*v +48k> — 45k* +10k° —126k>ru + 24k ru

50405 (r—s) (s —u) (s —1)(5—2)| =126k + 24k v — 126k uv + 24K uv +168kru +168krv

+168kuv —420ruy — —42k*ruv + 252kruv i

72K — 84K —84k™s — 15k r + 72k%s —15k*s — 84k

B k' +72k°v —15k*v + 48k> —45k* +10k° —126k’rs

~5040u (r—u) (s —u) (u—v)(u—1)(u—2)| 24k s — 126k rv + 24k rv —126k>sv + 24k’ sv

| +168krs +168krv +168ksv —420rsv — A2k rsv + 252krsv |

24k —15k"r + 24k>s —15k*s + 24k u — 15k u + 24k

B k* —15k*v —15k* +10k> — 42k’ rs + 24k sv — 42k uv

10080 (V - 2)(8 - 2)(” - 2)(" - 2) 241Uy — A2k rsu — A2k rsv — 421 ruy — 42k suv

+84krsu + 84krsv —84kruv + 84ksuv —210rsuv + 84krsuv |

A=

Ay

%

(8)

The first and second derivative of equation (6) is given by
+4 +4 +4 +
hy'(t,, + Zh) _ 2’00'0 +hﬂf10”n +h22/20mn +h3|:23:un a4 My sty 6Hnt1 :| (9)
271un+s + ﬂ’&un+u + ﬂ’9:un+2
+4 + A +4 +
thn(tn +Zh): h2120|v0+h3|:ﬂ’31un 7y 2 sty 6Hn+1 :| (10)
2’71un+s + 2’81un+u + ﬁ")/un+2

By putting k=1 in (8) we get a multistep formula to approximate the solution of (1) at the point 7, _, that is given by

n+l
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=27r=27s=27u—=27v+66r5+66ru+66rv+66su+665v+66uv
—219rsu—2107sv—210ruv—210suv+1134rsuv+13

1008075y H,
275+27u—=27v—665u—665v—66uv+210suv—13 27r+275+27u—66rs —66ru—66su+210rsu—13

50407 (—1)(r—2)(r—v)(r—u)(r—s) Hppr 5040v(r—1)(r—2)u—v(r—v) My
—33r—33s-33u —33v+60rs + 60ru + 60rv+ 60su + 60sv
. +60sv + 60uv —126rsu —126rsv—126ruv—126suv +336rsuv + 20
5040(v—1)u—1)s —1)\r—1) s

27r+27u+27v=66ru—66rv—66uv+210ruv—13 _ 27r+275+27v=66rs—66rv—66sv+210rsv—13

+ 50405 (s—1)(s—2)(s—v)(s—u)(r—s) Mg 5040u (u—1)(u—2)(u—v)(s—u)(r—u) Mo
-9 —-9s—-9u—-9v+18rs+18ru+18ru+18su +18sv +18uv

0 =0 +ho +1n20 o
n+l n n 2 n

—A42rsu—42rsv—42ruv—42suv +126rsuv+5

B 100800y —2)u —2)(s —2)(r—2) Hnea

(11

Expanding equation (11) using Taylor series around the point ¢, which we gives the corresponding local truncation error

L(Oty):h) =
25401600 — 66rsv—66ruv—66suv+210rsuv+7

We optimized (12) to gives a new value of v by equating it to zero, keeping r, s, u as free parameter by assigning the values

as
1 (— 137 =135 = 13u—13v+27rs+ 27rv+27sv+ 2 Tuy — 66rsuj (12)

r= E’S = E’u = 5 in (12) we obtainv = F Substituting the values of v,s,u and r into equations (5) gives
three equations, one for approximating the approximate solution and the other two for approximating the first and second
derivative at all points which after employing Gauss elimination methods and evaluating the coefficient gives the general
equations in block form

A(°>w£,;'>:_ih(")e,.e(")+h(3"‘) .%Oxlj(un(ﬁmﬁ)wn(@nﬁ)) (13)
Where :
o) =0 0 0 O 0w 0] =l o0l 0 0, o]

N S Y I (Y U PV L S Y |
and A = 6 x 6 matrix

when i=0
_ _ B 1
0O 0 0 0 O —
0 000 0 1l 00 0 0O % 18
101 0O 0 0 0 O 10201
0 0 0 0 01 m 64082
B 0O 0 0 0 O 1' _ 0 1 0O 0 0 0 O l
80_ e = 4 P €y = 2 s
000001 00000 2 z
000001 g 00000 o
0 0 0 0 0 1] 3 25
2 18
L i I 2
000 0 1403251
13744080
00 0 0 5514925007325007
55262110587467280
00 0 0O 17651
Lo = 169680
0000 0 88066
859005
000 0 0 287255
2748816
00 0 0O 2087
L 21210
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33689 ~ 509431134921491527 1342199 160883 150809 61877
83328 2088222893185927680 10614240 2081520 5967360 17486280
2318190934691760327 1515110730126587 49255353033486487  493018889570134659 468385400869420617 21515259974137661
4568334475230628480 15230081810711040  478938291758049760 7607750557541328880 21810112978520419840 7101181210489545480
62703 1414446878131603 5503 30411 25569 __1109
w, = 138880 8593509848501760 14560 231280 663040 215880
" 304 526305815118736 190048 5638 256 7576
651 4078560338253765 331695 130095 11655 2185785
112075 69899991070457125 1052875 123625 193285 29425
249984 417644578637185536 2122848 416304 1193472 3497256
873 32894113444921 1823 1611 21411 2626
1736 537094365531360 2730 28910 41440 26985 J

3. Analysis and implementation

In this subsection, analysis of basic properties of the newly derived methods shall be carried out. These properties include
order and error constant, local truncation error, consistence, zero-stability, convergence, stability polynomial and region of
absolute stability.

3.1 Orders and Error Constants
Consider the linear operator L associated with the implicit hybrid block methods defined as

Llote, :h)|= & 006, + j#)-12,0" (e, + jn)

Where y(t,, )is ;n arbitrary test function that is continuous and differentiable in the interval [a, b]. Obtaining the Taylor
series expansions of 19(1‘” + ]h) and (9”'(tn + ]h) about ¢, and collecting the coefficient of 4” gives;

L6,  h)]=c,0(t, )+ c,h0'(t, )+ c,h?0"(t, )+ et ¢, h 7OV, )+ ...

Where ¢ 's forj=0,1,2,3.... [11]

From (13), the linear multistep method has order p if

I[y(x): h]:O(hp”),co =¢=¢=..=¢,,=0,c,;#0
5274641 43664 13 4303472559874195697909 3440875 |1
163493359545600° 212881978575 25401600 6013482511651912513142841600° 2179911460608
236 7932311 307543 14059 332595749268839028277
97339725 27248893257600° 425763957150 12 459484800 248263039471867947 790300800
2417875 527 900911 21457 3221
1089955730304 194679450 605530961280 18922842540 2491896960°
576624072168533033 295075 767
| 455528512792418252826240 121106192256 15689721600 i

3.2 Zero Stability of the Block Method

The new block method is zero stable if the first characteristic polynomial p(w) = det[ § AD ki } = (O and satisfies
=0

1<
‘wj‘_l
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10000 X 000 L 000000
3 18
3 a 101 10201
100000000000O0O0O0GO0GO0O L0000 =2 0000 —rc 000000
01 0000000000000000/ o000 1 0000 L~ 0000000
001000000O0O0O0O0O0O0O0O00O A %
0001 00000000000000 10000 = 0000 = 0000000
00001000000O0GO0O0O0O0O0O 5 25
10000 2 0000 = 0 0 0
00000100000O0O0O0O0O0O00O 3 18
0000001 0000000G0GO0O0 O] |! 0 2 0 2 0
00000001000000000o0||° 0 0 0 3 0
000000O0ODO0100O0O0O0OO0OO0O0O0 0 0 0 0 0 0 o 101 0 0 0|_o
- 179 =
000000O0O0OO0OT100O0O0O0O0O00O 0 0 0 o o 00000
000000O0O0OO0OOTIO0O0O0O0O0O00O 4
0 00 0 00 2 000000
000000O0O0OO0OO0OTILIOO0O0O0O00O 3
0000000O00O0O0O0TIO0O0O0O00O0 00000 0 0000 > 0000000
oooooooooooooloooo000000000030000000
000000000000000T100 000000 0000 0 0000001
0000000000000000T0 000000 0000 0 0000001
006000000000 0000O0T1]1gpgpoo00 0 0000 O 00O0OCOO'1
00000 0O 0000 O 00O00O0GO0GO°1
00000 0 0000 0 0000O0O0 I

W8 317 L3910 5 — WIS(W_ 1)3

Solving the characteristic equation gives

p(w)=w'®(w-1)> =0, w=0,0,0,0,0,0,0,0,0.0,0,0,0,0,0.1,1,1

Therefore, |Wl‘| =| 0,0,0,0,0,07070>O'0>070,0>O,07L1,1| <1 the method is zero-stable.

3.3. Consistency

The optimized scheme is consistent, [12] since it has order more than or equal to one.

3.4 Convergence of the method
The optimized scheme is said to be convergent if and only if it is consistent and zero stable, [13]. Since the method is
satisfies the two conditions, then the method converges

3.5. Zero Stability of Our Method
Definition: A third derivative optimized scheme is said to be zero-stable, if the roots Wl-,i =r,V,1,s,u,2 of the first

characteristic polynomial p(w)=0 that is

k . .
p(w)=det| ¥ AWK Z 0 satisfies |w| <1 and for those roots with w, =1 multiplicity must not exceed two. Hence,
Jj=0
our method is zero-stable, [14].

3.5 Stability Polynomial
The stability polynomial of our method is given by

h6(iw6 ZZLWS) /z§h5( 1397 6 [ 4688 Ws) @4( BUT 6, 100527 Ws) 5h3(ww6 @Bﬂws) B

608958 1217916 6089580 1522395 4059720 4059720 101493 101493
2(15140 6 16130 5) (m 6 o814 5) 6 aid
h TR 533831“) h sy W S W W
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The absolute stability region of the method is plotted and shown in figurel
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Figurel. The Region of Absolute Stability of the method

3.6 Numerical Examples
Problem 1

1
Consider the initial value problem below }'"'—y"'+)'-y =0, y(O) =1, y'(O) =0, y"(O) =—1:h= 100° Exact

Solution y(x) =COSX

Source: Tumba et al. (2021)
Example2. Consider the highly non-stiff third order ordinary differential equation

y"(x)=3cos(x), 1(0)=1,'(0)=0, y"(0)=2:h=

The exact solution given by y(x) = x> —3sin (x) +3x+1
Source: Taparki et al. (2010)

Problem 3
Consider a highly stiff problem

Y5y Ty'+3y=0, y[o]=1 , y'[o]=0, y"[0]=—1, Exact Solution: y(x)=e

Source: Tumba et al. (2021)

—X —X
+Xxe

, h=

L
10

Tablel. Showing the comparison of absolute error in our method with Raymond ez al. [5] for problem two

X Exact solution Computed solution Error in our method | Err in Raymond et al [5]
0.1 | 0.9999500004166652778 | 0.9999500004166652772 | 4.00e-20 2.55208e-12
0.2 | 0.9998000066665777781 | 0.9998000066665777788 | 3.00e-20 3.64210e-12
0.3 | 0.9995500337489875167 | 0.9995500337489875168 | 1.00e-20 4.5313e-12
0.4 | 0.9992001066609779401 | 0.9992001066609779405 | 6.00e-20 1.3406e-12
0.5 | 0.9987502603949662466 | 0.9987502603949662463 | 3.00e-20 3.28547e-12
0.6 | 0.9982005399352041655 | 0.9982005399352041655 | 6.00e-20 4.59125e-12
0.7 | 0.9975510002532795742 | 0.9975510002532795746 | 1.10e-19 5.47318e-12
0.8 | 0.9968017063026193848 | 0.9968017063026193845 | 1.31e-19 1.96524e-12
0.9 | 0.9959527330119942539 | 0.9959527330119942530 | 9.00e-19 2.34526e-12
1.0 | 0.9950041652780257660 | 0.9950041652780257654 | 1.60e-19 2.55587e-12
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Table2. Showing the comparison of absolute error in our method with Taparki ez al. [15] for problem three

X Exact solution Computed solution Error in our method | Error in Taparki ef al. [15]
0.1 | 1.01049975005951554310 | 1.01049975005951552960 | 1.350e-17 2.4800e-07
0.2 | 1.04399200761481635360 | 1.04399200761481628590 | 6.770e-17 7.3740¢e-06
0.3 | 1.10343938001598127470 | 1.10343938001598109520 | 1.795¢-16 6.0542¢-05
0.4 | 1.19174497307404852500 | 1.19174497307404811040 | 4.146¢-16 2.5479¢-04
0.5 | 1.31172338418739099920 | 1.31172338418739022780 | 7.714e-16 7.7602¢-04
0.6 | 1.46607257981489392840 | 1.46607257981489259380 | 1.334e-16 1.9261¢-03
0.7 | 1.65734693828692683900 | 1.65735020063250070330 | 3.262¢-06 4.1505¢-03
0.8 | 1.88793172730143171510 | 1.88794794834400722260 | 1.622¢-05 8.3637¢-03
0.9 | 2.16001927111754983460 | 2.15991439240417582420 | 1.048e-04 1.4774¢-02
1.0 | 2.47558704557631048000 | 2.47511682136265474470 | 4.702¢-04 2.4702¢-02

Table3. Showing the comparison

of absolute error in our method with Tumba et al. [16] for problem two

X Exact solution Computed solution Error in our method | Err in Tumba ef al. [16]
0.1 ] 0.9953211598395555308 | 0.9953211598395558739 | 3.4311e-16 1.0434e-14
0.2 | 0.9824769036935782300 | 0.9824769036935797036 | 1.47296¢-15 9.8731e-14
0.3 | 0.9630636868862332259 | 0.9630636868862359300 | 2.70461e-15 3.1317e-13
0.4 | 0.9384480644498950214 | 0.9384480644498990435 | 4.02221e-15 6.6668¢-13
0.5 | 0.9097959895689501350 | 0.9097959895689551975 | 5.06255¢-15 1.1507e-12
0.6 | 0.8780986177504422921 | 0.8780986177504482366 | 5.94415¢-15 1.7445e-12
0.7 | 0.8441950164453961749 | 0.8441950164454026430 | 6.46881e-15 2.4220e-12
0.8 | 0.8087921354109988647 | 0.8087921354110056593 | 6.79516e-15 3.1554e-12
0.9 | 0.7724823535071383127 | 0.7724823535071451207 | 6.8083e-15 3.9178e-12
1.0 | 0.7357588823428846430 | 0.7357588823428913075 | 6.66385¢-15 4.6852¢-12

4. Conclusion

A hybrid technique with two-step optimization for handling general third-order ordinary differential equations was
proposed using scientific workplace 5.5 versions for the derivation. The method is applied in block form and when
analyzing the properties of the method, it was found to be zero-stable, consistent, and convergent. Also, the order and error
constant are established.

It can be seen from the Table 1, 2, and 3 that our method performance better than the existing method of [14] and [15]
when solving similar examples.
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