

ICON Journal of Applied Medical Sciences

Volume 01 | Issue 03 | 2025 e-ISSN: 3117-5635 p-ISSN: 3117-5627

Journal homepage: https://iconpublishers.com/icon-j-app-med-sci/

Research Article

DOI: 10.5281/zenodo.17455106

Gentle scoliosis of the lumbar spine with convexity to the left

*Onuora Ifeoma Joy 1 and Johnkennedy Nnodim 2

- ¹ Department of Medical Laboratory Science, Chukwuemeka Odumegwu Ojukwu University Igbariam Campus, Anambra State, Nigeria.
- ² Department of Medical Laboratory Science Imo State University Owerri, Nigeria.

Corresponding author: Onuora Ifeoma Jov

Department of Medical Laboratory Science, Chukwuemeka Odumegwu Ojukwu University Igbariam Campus, Anambra State, Nigeria.

Received Date: 10 Sept. 2025

Published Date: 27 Oct. 2025

Abstract

Gentle scoliosis of the lumbar spine with convexity to the left denotes a relatively mild spinal curvature that is commonly detected inadvertently during clinical or radiological screening. Although less severe than structural or progressive scoliosis, its presence might alter posture, spinal biomechanics, and predispose to pain syndromes or degenerative spinal changes if left unmonitored. This review examines the definition, epidemiology, etiology, clinical aspects, diagnostic techniques, management strategies, and long-term outlook of this disorder, emphasizing the need of awareness and early intervention.

Keywords: Gentle scoliosis, lumbar, spine, convexity, left.

Introduction

Scoliosis is defined as a three-dimensional deformity of the spine, distinguished by a lateral curvature exceeding 10 degrees, commonly assessed using the Cobb angle on radiographs. This angular assessment is still the best way to evaluate how much the spine is curved and set diagnostic thresholds [1]. Thoracic scoliosis typically presents with a right convexity, but the lumbar region frequently exhibits a curve convex to the left. Gentle scoliosis of the lumbar spine denotes a mild spinal curvature, often under 20 degrees, characterised by the absence of significant structural or rotational deformities. These cases are often asymptomatic and are occasionally identified inadvertently during imaging performed for other medical issues, such as the assessment of abdominal pain, trauma, or degenerative illness. Even though this type of scoliosis is not very obvious, it could have effects on spinal biomechanics, muscular balance, postural alignment, and, in the long run, quality of life [2,3].

From a definitional perspective, lumbar scoliosis with left convexity is characterised by a lateral deviation of the vertebral column at the lumbar level, with the outward curve orientated towards the patient's left side[4]. The term "gentle scoliosis" emphasises the mildness of the deformity, setting it apart from moderate or severe scoliosis, which can lead to progressive vertebral rotation, rib cage abnormalities, and, in extreme cases, impaired pulmonary or neurological function. Gentle scoliosis may not advance much, although it can gently affect spinal loading and render persons susceptible to musculoskeletal strain [5].

Scoliosis, in a general sense, can come from a number of different causes. Idiopathic scoliosis, the predominant type, particularly in adolescents, lacks a discernible cause and is thought to arise from multiple genetic and environmental factors [6]. Degenerative scoliosis usually happens in adults and is linked to the collapse of intervertebral discs, facet joint arthropathy, and the growth of osteophytes, which throw off the balance of the structures that support the spine. Congenital scoliosis results from vertebral anomalies during embryonic development, while neuromuscular scoliosis is associated with conditions such as cerebral palsy, muscular dystrophy, or spinal cord injury, wherein muscle imbalance and neurological dysfunction affect spinal curvature. Traumatic scoliosis may develop subsequent to spinal fractures or surgical procedures.

Published By ICON Publishers

In adults, left lumbar scoliosis is primarily associated with degenerative and postural alterations. In children and adolescents, it may indicate a variation of idiopathic scoliosis, although right-sided thoracic curves are far more prevalent in that demographic [7].

Epidemiological studies indicate that the prevalence of lumbar scoliosis escalates with age, especially in women over 50 years, aligning with the elevated incidence of osteoporosis and degenerative spinal illness in this population. Research shows that as many as 30% of persons over 60 have some degree of lumbar curvature that can be shown on imaging [8]. The pathophysiological foundations of these curves are frequently associated with asymmetric disc degeneration, facet joint remodelling, and paraspinal muscle imbalance, which collectively facilitate lateral deviations in the lumbar spine. Left convexity is generally rare in adolescent idiopathic scoliosis, characterised by predominant right thoracic curvature, although it becomes increasingly common in older populations. This change is the result of a number of degenerative processes that damage lumbar motion segments more than others, which causes scoliosis that is commonly linked to sagittal and axial imbalance [9].

Clinically, mild scoliosis of the lumbar spine may stay asymptomatic for years; however, it can lead to the gradual onset of lower back discomfort, radicular symptoms resulting from foraminal constriction, or compensatory postural changes that impact gait and balance [10]. Additionally, even slight bends can change how weight is spread across the intervertebral discs and facet joints, which speeds up wear at the lumbosacral junction. Longitudinal studies indicate that individuals with mild scoliosis may have an elevated chance of acquiring persistent low back pain syndromes, especially when scoliosis is accompanied by spondylosis or spinal stenosis [11].

Causes of lumbar scoliosis with left convexity

The actiology of mild lumbar scoliosis with left convexity is multifaceted and frequently intricate, including a combination of degenerative, biomechanical, neuromuscular, and postural influences. In adulthood, degenerative changes are one of the most important causes. Changes that happen with age, like narrowing of the intervertebral disc space on one side, production of osteophytes along the edges of the vertebrae, and facet joint arthropathy, disrupt the balance of the components that support the spine [7]. When degeneration happens unevenly, one side of the disc or facet complex may break down faster than the other, which makes the spine lean to one side. Over time, these modifications can become a permanent curve, especially if they are added to spinal asymmetries that were already there [9]. Postural factors significantly contribute to the progression of mild lumbar scoliosis. Long-term bad ergonomic habits, like sitting for long periods of time in non-neutral positions, carrying things with uneven loads, or doing jobs that require frequent trunk rotation, can slowly put uneven mechanical stress on the lumbar spine. These ongoing forces could cause the vertebrae and discs to change shape, which could cause a little curve. Sedentary lifestyles, weak core muscles, and lack of flexibility can also make people more likely to get hurt by making it harder for the spine to stay in neutral position while it is loaded every day [4]. Leg length disparity (LLD) is a well-known risk factor. Even a small discrepancy in limb length might cause the pelvis to tilt when standing or walking. In order to make up for this, the lumbar spine shifts to the side, which usually shows up as a curve that bends towards the side of the shorter limb. If this compensatory curvature persists over several years, it may develop into structural scoliosis, especially when accompanied by degenerative changes. In certain instances, the curve may exhibit flexibility and reversibility upon rectification of leg length discrepancy through shoe lifts or orthotic measures, underscoring the necessity for precise clinical evaluation of pelvic alignment [11]. Neuromuscular factors also contribute to the formation of modest lumbar curvature. Imbalances in the paraspinal muscles, whether from not using them enough, using them unevenly, or neurological problems, can cause tension down the spine to be uneven. This difference in pull puts uneven stress on the vertebrae and intervertebral discs, which slowly changes their alignment. For instance, if the multifidus and erector spinae on one side are weaker than those on the other, the spine may bend to the side. On the other hand, if the muscles on the opposite side are too tight, the curvature may be even more pronounced. Neuromuscular scoliosis is more pronounced in disorders such as muscular dystrophy or cerebral palsy, although even slight abnormalities in normally healthy persons can lead to moderate scoliosis [12]. Despite these acknowledged mechanisms, a considerable number of cases lack a definitive aetiology, resulting in the classification of scoliosis as idiopathic. Idiopathic curves are prevalent in teenagers but may also be identified in adults as incidental findings. In many instances, genetic predispositions, nuanced developmental discrepancies in vertebral growth, or unexplained molecular pathways may contribute to spinal asymmetry [13]. From a biomechanical standpoint, a left convex lumbar curve modifies the typical stress distribution across vertebral bodies, discs, and facet joints. The concave side of the curve is under compressive stress, which can cause the disc to lose height and possibly pinch a nerve root. The convex side, on the other hand, is under tensile stress, which strains muscles and ligaments. This uneven load sharing speeds up local degeneration and may make people more likely to develop pain syndromes such persistent low back pain, radiculopathy, and sacroiliac dysfunction. Over time, the uneven mechanical stress might keep the cycle of degeneration and additional curvature advancement going [14].

Diagnosis of lumbar scoliosis with left convexity

Clinically, many persons with gentle scoliosis are asymptomatic. When symptoms emerge, they are usually minor and include mechanical low back pain, muscular imbalance or weariness after prolonged exertion, reduced range of lumbar

motion, or subtle asymmetry in posture such as an uneven waistline. Severe consequences are uncommon in moderate scoliosis, and neurological impairment is unusual [15]. Imaging and clinical examination both play a role in the diagnostic process. Although the standard Adam's forward bend test is less noticeable in lumbar curves compared to thoracic curves, modest waist asymmetry or pelvic tilt may be noticed upon physical inspection. The results of a neurological exam are usually within the normal range. For determining the severity of a curve, radiographic evaluation using the Cobb angle is still considered gold standard. When several diseases are suspected, including degenerative disc degeneration and spinal stenosis, advanced imaging techniques like MRI and CT scans can be helpful [16]. Minor, stable curves do not require aggressive procedures, hence cautious management is typically the best course of action for minor lumbar scoliosis. Physical therapy plays a crucial role, with a focus on enhancing flexibility, correcting posture, and strengthening the core and paraspinal muscles. Common pain relievers include heat therapy, muscle relaxants, and non-steroidal antiinflammatory medications. Making changes to one's lifestyle, such as sticking to a healthy weight, improving one's workstation ergonomics, and exercising regularly, can also help slow the progression. Adolescents may be evaluated for bracing if their curve shows evidence of advancement, but adults are less likely to need treatment. In more severe situations, when the curvature has progressed considerably, neurological impairments have developed, or discomfort has not responded to conservative treatments, surgical intervention may be considered. [17] The prognosis is often positive for mild lumbar scoliosis with left convexity. When risk factors for degeneration are addressed, the majority of individuals experience long-term stability. The significance of long-term monitoring is highlighted by the fact that a small percentage of patients may encounter progression or secondary problems including spinal stenosis or lumbar spondylosis [18]. Genetic studies, biomechanical modelling, and sophisticated imaging techniques are broadening the future of scoliosis research by providing fresh insights into the formation and management of curves. Improved patient outcomes are on the horizon thanks to tailored rehabilitation programs and non-invasive diagnostic techniques like gait analysis and dynamic magnetic resonance imaging (MRI) [19].

Conclusion

Finally, a modest spinal abnormality that is clinically important is soft lumbar scoliosis with left convexity. Despite the lack of symptoms, this condition, if left untreated, can lead to degenerative spinal abnormalities and mechanical back pain. Care that works is based on early diagnosis, close monitoring, and conservative treatment. Most people can keep their spines healthy and have a decent quality of life if they follow the right measures.

References

- 1. Konieczny, M. R., Senyurt, H., & Krauspe, R. (2013). Epidemiology of adolescent idiopathic scoliosis. *Journal of Child Orthopaedics*, 7(1), 3–9.
- 2. Horng, M. H., Kuok, C. P., Fu, M. J., Lin, C. J., & Sun, Y. N. (2019). Cobb angle measurement of spine from X-ray images using convolutional neural network. *Computational and Mathematical Methods in Medicine*, 2019, 6357171. https://doi.org/10.1155/2019/6357171
- 3. Kotwal, S., Pumberger, M., Hughes, A., & Girardi, F. (2011). Degenerative scoliosis: A review. *HSS Journal*, 7(3), 257–264.
- 4. York, P. J. (2017). Degenerative scoliosis. Current Reviews in Musculoskeletal Medicine, 10(2), 203–210.
- 5. Silva, F. E., & Lenke, L. G. (2010). Adult degenerative scoliosis: Evaluation and management. *Neurosurgical Focus*, 28(3), E1.
- 6. Ploumis, A., Transfeldt, E. E., & Denis, F. (2007). Degenerative lumbar scoliosis associated with spinal stenosis. *Spine Journal*, 7(4), 428–436.
- 7. Kelly, A., Younus, A., & Lekgwara, P. (2020). Adult degenerative scoliosis A literature review. *European Spine Journal*, 29(3), 575–586.
- 8. Berven, S. H., Deviren, V., Mitchell, B., Wahba, G., Hu, S. S., & Bradford, D. S. (2007). Operative management of degenerative scoliosis: An evidence-based approach to surgical strategies based on clinical and radiographic outcomes. *Neurosurgical Clinics of North America*, 18(2), 261–272.
- 9. Tribus, C. B. (2003). Degenerative lumbar scoliosis: Evaluation and management. Spine Journal, 3(5), 416–423.
- Birknes, J. K., Kuslich, S. D., & Sasso, R. C. (2008). Adult degenerative scoliosis: A review. Spine Journal, 8(1), 71–80.
- 11. Ploumis, A., Ensor, E., Transfeldt, E., & Denis, F. (2007). Degenerative lumbar scoliosis associated with spinal stenosis. *Spine*, 7(4), 428–436.
- 12. Daffner, S. D., & Vaccaro, A. R. (2003). Adult degenerative lumbar scoliosis. *American Journal of Orthopedics (Belle Mead)*, 32(2), 77–82.
- 13. Schwab, F., Farcy, J. P., & Bridwell, K. (2006). A clinical impact classification of scoliosis in the adult. *Spine*, 31(18), 2109–2114.
- 14. McAviney, J., Roberts, C., Sullivan, B., Alevras, A. J., Graham, P. L., & Brown, B. T. (2020). The prevalence of adult de novo scoliosis: A systematic review and meta-analysis. *European Spine Journal*, 29(12), 2960–2969.
- 15. Kotwal, S., Pumberger, M., Hughes, A., & Girardi, F. (2011). Degenerative scoliosis: A review. *HSS Journal*, 7(3), 257–264.

- 16. Wang, H., Liu, X., Li, Y., Ren, J., Sun, Z., & Sun, N. (2024). The selection of a surgical strategy for the treatment of adult degenerative scoliosis with "pear-shaped" decompression under open spinal endoscopy. *Scientific Reports*, 14, 16019. https://doi.org/10.1038/s41598-024-16019-0
- 17. Cho, K. J., Kim, Y. T., Shin, S., & Suk, S. I. (2014). Surgical treatment of adult degenerative scoliosis. *Asian Spine Journal*, 8(3), 371–379. https://doi.org/10.4184/asj.2014.8.3.371
- 18. Wang, J., Zhang, J., Xu, R., Chen, T. G., Zhou, K. S., & Zhang, H. H. (2018). Measurement of scoliosis Cobb angle by end vertebra tilt method. *Journal of Orthopaedic Surgery and Research*, 13, 223. https://doi.org/10.1186/s13018-018-0928-5
- 19. Sikkandar, M. Y., Haq, A. U., & Sarfraz, Z. (2024). Unsupervised local center of mass based scoliosis spinal segmentation and Cobb angle estimation. *PLoS ONE*, 19(7), e0300685. https://doi.org/10.1371/journal.pone.0300685