

ICON Journal of Applied Medical Sciences

Volume 01 | Issue 04 | 2025 e-ISSN: 3117-5635 p-ISSN: 3117-5627

Journal homepage: https://iconpublishers.com/icon-j-app-med-sci/

Review Article

DOI: 10.5281/zenodo.17636388

Recent Advances in Dental Ceramics: A Narrative Review

* Dr. Arpit Sikri 1, Dr. Jyotsana Sikri 2

- ¹ Associate Professor & Post Graduate Teacher, Department of Prosthodontics, Crown & Bridge and Oral Implantology, Bhojia Dental College & Hospital, Budh (Baddi), Teh. Baddi, Distt. Solan, Himachal Pradesh, India.
- ² Associate Professor & Post Graduate Teacher, Department of Conservative Dentistry & Endodontics, Bhojia Dental College & Hospital, Budh (Baddi), Teh. Baddi, Distt. Solan, Himachal Pradesh, India.

Corresponding author: Dr. Arpit Sikri

Associate Professor & Post Graduate Teacher, Department of Prosthodontics, Crown & Bridge and Oral Implantology, Bhojia Dental College & Hospital, Budh (Baddi), Teh. Baddi, Distt. Solan, Himachal Pradesh, India.

Received Date: 30 Sept. 2025

Published Date: 18 Nov. 2025

Abstract

Dental ceramics have undergone rapid evolution during the past decade driven by demands for improved esthetics, mechanical performance, bioactivity, and digital manufacturing compatibility. This narrative review summarizes recent advances in major classes of dental ceramics zirconia, lithium (lithia)-based glass ceramics, lithium silicate/ lithium disilicate derivatives, machinable ceramic-reinforced composites, and emerging bioactive/antibacterial ceramic systems and relates material science progress to clinical implications and workflows. Key innovations include engineered phase-stabilized and translucent zirconias, novel lithium-silicate glass compositions with strengthened microstructures, surface treatments and bonding strategies that improve reliability, additive manufacturing/3D printing approaches, and ceramics functionalized for bioactivity and antimicrobial effects. Remaining challenges are long-term clinical validation, balancing translucency with strength, reliable adhesive protocols, and standardization for 3D-printed ceramics. This review highlights recent literature and provides clinical considerations for material selection and future research directions.

Keywords: Antibacterial ceramics, Bioactive ceramics, Dental ceramics, Glass-ceramics, Lithium disilicate, 3D printing, Zirconia.

INTRODUCTION

Ceramic materials are central to restorative and prosthetic dentistry because they combine esthetics, wear resistance, and biocompatibility.¹ Over the last 10–15 years, innovation has accelerated from traditional feldspathic porcelains to high-strength polycrystalline zirconias and engineered glass-ceramics designed for CAD/CAM and additive manufacturing workflows.² These material advances have been accompanied by improvements in milling technologies, surface treatments, and adhesive chemistry, which together influence clinical performance.³ This narrative review synthesizes contemporary developments across major ceramic classes, focusing on material chemistry, processing, mechanical/optical properties, surface modification, and emerging bioactive and antibacterial functionalities.

DISCUSSION

Recent developments in dental ceramics have transformed the landscape of restorative and prosthetic dentistry, offering a balance between strength, esthetics, and biological performance. Over the past decade, continuous advances in material science, microstructural engineering, and digital fabrication have diversified the available ceramic systems, enabling clinicians to tailor restorative choices according to individual clinical needs. The evolution of zirconia and lithia-based glass–ceramics, in particular, has demonstrated remarkable progress in translucency, toughness, and bonding capabilities,

Published By ICON Publishers

thereby expanding their clinical indications from posterior frameworks to highly esthetic anterior restorations.

Parallel innovations in additive manufacturing, machinable hybrid ceramics, and surface modification techniques have further enhanced precision, efficiency, and adhesion reliability. Simultaneously, the emergence of bioactive and antibacterial ceramics has opened new avenues toward restorations that not only replace missing structure but also contribute to oral health maintenance. However, despite these promising advancements, challenges remain concerning long-term performance, wear behavior against natural dentition, and the standardization of digital workflows.

The following discussion explores key domains within this rapidly advancing field, including the evolution and engineering of zirconia ceramics, improvements in lithia-based glass—ceramics, the rise of machinable hybrid materials, additive manufacturing techniques, bonding and surface treatment strategies, bioactive and antibacterial innovations, wear behavior considerations, and the growing body of clinical evidence supporting these materials.

1. Evolution and engineering of zirconia ceramics

Zirconia has arguably seen the most rapid and clinically impactful evolution. Early dental zirconias were primarily 3-mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) with excellent strength but limited translucency.⁴ Over the past decade manufacturers introduced 'multilayer' and 'multiphase' zirconias with increased yttria contents (4Y, 5Y) and engineered grain structures to improve translucency while attempting to retain sufficient fracture toughness for posterior use.⁵ Recent comprehensive reviews describe how microstructural tuning (grain size, stabilizer content, controlled porosity) and multilayer architectures balance translucency and strength, and outline clinical recommendations for indication-based selection (e.g., high-translucency 5Y for veneers, 3Y/4Y blends for posterior crowns/bridges).⁶ However, trade-offs remain: higher yttria levels increase cubic phase content, improving translucency but reducing transformation toughening and low-temperature degradation resistance.⁷

Clinical guidance has also matured: appropriate prep designs, cementation choices (resin cement vs. conventional), and laboratory handling (avoiding over-grinding, proper sintering protocols) are now emphasized to optimize success with newer translucent zirconias. Recent clinical reviews recommend indication-specific use and caution with long-span fixed dental prostheses using highly translucent zirconias until more long-term data accumulate.

2. Advances in lithia-based glass-ceramics and lithium silicate systems

Glass-ceramics based on lithium disilicate and other lithia-based compositions remain core esthetic materials for single crowns, veneers, and minimally invasive restorations. Innovations have focused on compositional control and crystallization strategies to optimize mechanical strength and optical properties. ¹⁰ New lithium silicate/lithia-based glass-ceramics use tailored nucleation and crystal growth to produce interlocking microstructures that increase flexural strength while maintaining translucency. Reviews of lithia-based glass-ceramics summarize how microstructure, heat treatment, and surface polishing/glazing influence strength and fatigue behavior. Clinically, these materials continue to show excellent performance for single-unit crowns and short-span bridges when bonded with modern adhesive protocols. ¹¹

3. Machinable ceramic-reinforced composites and hybrid ceramics

A growing class of materials blends ceramic phases with resin or polymer matrices to create machinable blocks that combine fracture resistance with easier milling and potentially less antagonistic wear. These ceramic-reinforced composites (CRCs) and machinable glass-ceramic-polymer hybrids aim to offer more fracture-resistant restorations, simplified intraoral adjustments, and repairability. First-generation clinical reports and laboratory studies indicate favorable marginal fit and reduced brittleness compared with monolithic glass-ceramics, though long-term clinical data are still emerging. 3D printing of CRCs is an active development area enabling complex internal architectures and material gradients for tailored mechanical responses.¹²

4. Additive manufacturing and digital workflows for ceramics

Additive manufacturing (AM) of ceramics particularly for zirconia and glass-ceramics has moved from research labs toward limited clinical and laboratory use. Technologies include ceramic stereolithography (ceramic-SLA), binder-jet printing with subsequent sintering, and extrusion-based methods. AM allows grading of translucency, controlled porosity, and complex geometries (e.g., internal channels, lattice structures) that are difficult with subtractive milling. However, reliable densification, shrinkage control during sintering, and surface finish remains challenging. Recent methodological reviews highlight progress in printable ceramic slurries, photopolymerizable resins with high ceramic loading, and process optimization to reduce defects and anisotropy. Clinicians should be aware that AM-produced ceramics often require post-processing (sintering, infiltration, polishing) and that standardized clinical validation is limited.¹³

5. Surface treatments, bonding, and reliability

A significant body of recent work addresses bonding strategies and surface treatments necessary to achieve reliable adhesion to high-strength ceramics especially zirconia which cannot be etched with hydrofluoric acid like silica-based glass-ceramics. Innovations include selective infiltration etching, tribochemical silica coating, and novel primers containing organophosphate monomers (e.g., 10-MDP) that chemically bond to zirconia surfaces. ¹⁴ Optimized airborne-

particle abrasion protocols and controlled glaze removal have been shown to improve resin bond strength without excessively compromising flexural strength. For glass-ceramics, controlled HF etching followed by silanization remains the gold-standard for adhesive bonding. These surface protocols are critical determinants of clinical success for adhesive and bonded restorations.¹⁵

6. Bioactive and antibacterial ceramics toward therapeutic restorations

Emerging research focuses on imparting bioactivity (e.g., remineralization, hydroxyapatite formation) and antibacterial properties to restorative ceramics and implant ceramics. Approaches include incorporation or surface-functionalization with bioactive glass phases, calcium-phosphate components, silver or copper nanoparticles, and antimicrobial ions. Preclinical studies and recent reviews indicate potential to reduce bacterial adhesion, promote soft-tissue integration around implant abutments, and support peri-implant bone response. Nevertheless, translating these multifunctional ceramics to routine clinical use will require robust long-term safety and efficacy data, consideration of ion release kinetics, and evaluation of effects on mechanical properties. ¹⁶

7. Wear behavior and antagonistic tooth preservation

As ceramic translucency improves, concerns arise about wear on opposing dentition. Contemporary studies compare wear rates of modern zirconias, glass-ceramics, and hybrid materials against natural enamel and report that polished and glazed zirconias can be relatively enamel-friendly, whereas roughened or adjusted surfaces dramatically increase antagonistic wear. Thus, clinical finishing protocols (polishing, glazing) and occlusal adjustment techniques are central to minimizing adverse wear outcomes. ¹⁷

8. Clinical evidence and long-term outcomes

Systematic reviews and registry data continue to support excellent short- to medium-term survival for lithium disilicate crowns and 3Y-TZP zirconia frameworks. However, for recently introduced translucent zirconias (4Y/5Y) and many AM ceramics, long-term (>10 years) prospective data are limited. Many contemporary narrative and systematic reviews emphasize that clinicians should match material properties to restoration demands (posterior vs. anterior, single crown vs. long-span bridge) and adhere to validated cementation/finish protocols to maximize longevity. ¹⁸⁻²⁰

CONCLUSION

Recent advances in dental ceramics provide clinicians with a richer palette of materials that can better balance esthetics and strength and enable new digital fabrication workflows. Engineered zirconias and optimized lithia-based glass-ceramics extend indications for monolithic ceramic restorations, while hybrid CRCs and additive manufacturing promise new design freedoms. Functionalization of ceramics for bioactivity and antibacterial behavior is a promising frontier but requires cautious clinical translation. For safe and predictable outcomes clinicians must: (1) select materials guided by indication and evidence, (2) follow validated surface treatment and cementation protocols, (3) ensure high-quality digital fabrication and finishing, and (4) monitor emerging long-term clinical data for newer materials. Future research should prioritize standardized clinical trials, long-term registries for new compositions and AM processes, and multidisciplinary work linking material science to biologic response.

REFERENCES

- 1. Cesar, P. F., Giannini, M., Zavanelli, A. C., & Demarco, F. F. (2024). Recent advances in dental zirconia: 15 years of material development and clinical implications. *Dental Materials*, 40(4), e1–e18. https://pmc.ncbi.nlm.nih.gov
- 2. Kongkiatkamon, S., Kosayodhin, C., & Leelataweewud, P. (2023). Current classification of zirconia in dentistry: An updated review. *Journal of Prosthetic Dentistry*, 129(1), 1–12. https://pmc.ncbi.nlm.nih.gov
- 3. Huang, B., Li, X., & Sun, Y. (2024). Advances in zirconia-based dental materials: Properties, processing and clinical perspectives. *Materials Science and Engineering: C, 142*, 114623. https://www.sciencedirect.com
- 4. Vijan, K., Patel, S., & Morgan, R. (2024). Emerging trends and clinical recommendations for zirconia crowns: A narrative review. *British Dental Journal*, 237(10), 689–697. https://www.nature.com
- 5. Al-Johani, H., Costa, A., & Lemos, C. (2024). Lithium silicate-based glass ceramics in dentistry: A narrative review. *Journal of Esthetic and Restorative Dentistry*, 36(3), 325–342. https://www.mdpi.com
- 6. Jiang, Y., Zhang, H., & Li, Z. (2024). An overview of dental glass-ceramics: From material design to clinical application. *Ceramics International*, 50(12), 20123–20140. https://ceramics.onlinelibrary.wiley.com
- 7. Baptista, I. O., Soares, C. J., & Silva, N. R. (2022). Antibacterial activity improvement of dental glass-ceramic by incorporation of functional nanoceramics. *Journal of Dentistry*, 115, 103878. https://www.sciencedirect.com
- 8. Hallmann, L., Rios, S., & Kasperski, J. (2025). Antibacterial ceramics for dental applications: Mechanisms and recent developments. *Applied Sciences*, 15(8), 4553. https://www.mdpi.com
- Zhai, S., Li, J., & Wang, Y. (2023). Overview of strategies to improve the antibacterial property of implant materials: Coatings, ion release and bioactive ceramics. Frontiers in Bioengineering and Biotechnology, 11, 11565119. https://pmc.ncbi.nlm.nih.gov
- 10. Wang, G., Chen, L., & Zhang, X. (2023). Recent progress in additive manufacturing of ceramic materials for dental

- restorations: Challenges and opportunities. *Journal of the European Ceramic Society*, 43(15), 6379–6398. https://www.sciencedirect.com
- 11. Celik, H. K., Yilmaz, H., & Erturk, O. (2023). The state of additive manufacturing in dental research: A systematic overview. *Journal of Dental Research*, 102(9), 948–957. https://pmc.ncbi.nlm.nih.gov
- 12. Su, G., Zhang, L., & Qian, J. (2023). 3D-printed zirconia used as dental materials: A critical review. *Journal of Biological Engineering*, 17, 85. https://biomedicalcentral.com
- 13. Lu, Y., Ferracane, J., & Zhang, Y. (2025). Additive-manufactured ceramics for dental restorations: A systematic review of mechanical properties and clinical readiness. *Frontiers in Dental Medicine*, *2*, 1512887. https://www.frontiersin.org
- 14. Kessler, A., Müller, P., & Sorensen, J. A. (2024). Influence of additive versus subtractive manufacturing on zirconia and lithium disilicate restorative properties: An in vitro study. *Journal of Prosthodontics*, 33(5), 402–414. https://onlinelibrary.wiley.com
- 15. Zhong, C., He, Y., & Xu, T. (2024). Advancements and challenges in zirconia-based materials for dental applications. *Ceramics International*, *50*(7), 11845–11860. https://www.irsm.com
- 16. Vasluianu, R. I., Popa, D., & Ionescu, A. (2025). Innovative smart materials in restorative dentistry: Bioactive, antibacterial and stimuli-responsive ceramics. *International Journal of Molecular Sciences*, 26(3), 1241. https://pmc.ncbi.nlm.nih.gov
- 17. Alqutaibi, A. Y., Park, J., & Kim, S. (2024). Advanced additive manufacturing in implant dentistry: 3D-printed bioceramics and ceramic-metal hybrids. *Materials Today Bio*, 18, 100518. https://www.sciencedirect.com
- 18. Suárez, M. J., Fernández, E., & Román, J. S. (2022). Zirconia translucency and aging: A review of material designs and clinical implications. *Dental Materials*, 38(10), e407–e420. https://www.sciencedirect.com
- 19. Chen, Y., Zhao, X., & Liu, H. (2025). Application of 3D printing technology in dentistry: Materials, techniques and future directions. *Polymers*, 17(7), 886. https://www.mdpi.com
- International Academy of Ceramic Dentistry. (2024). Contemporary perspectives on dental ceramics Definitions, classifications and clinical recommendations. *International Journal of Prosthodontics*, 37(Suppl), S1–S14. https://pmc.ncbi.nlm.nih.gov