ICON Journal of Engineering Applications of Artificial Intelligence Tg
Volume 01 | Issue 06 | 2025

e-ISSN: 3051-3820 ICON
il p-ISSN: 3051-3812

‘ Journal homepage: https://iconpublishers.com/icon-j-eng-app-ai/

PUBLISHERS

Research Article DOI: 10.5281/zenodo.18099059

A Review Using Vision Transformer-Based Land Use and Land
Cover Classification from Satellite Imagery

*Showkat A. Dar !, S. Sai Tharuneswar %, K. V. Kowshik Atherya ?, G. Chaithanya Kumar Reddy *, Yashwanth T.
R.5, P. Jaswin °

1,23 ’4’5’6Department of Computer Science and Engineering, GITAM University, Bangalore - 561203, INDIA.

Corresponding author: Showkat A. Dar Received Date: 19 Nov.2025
Department of Computer Science and Engineering, GITAM University,

Bangalore - 561203, INDIA. Published Date: 31 Dec. 2025

Abstract

Classifying Land Use and Land Cover (LULC) using satellite imagery is important for environ- mental observation,
urban planning, and disaster management. Traditional machine learning techniques and convolutional neural
networks (CNNs) have been widely used in this domain, but they still face problems with complex spatial patterns,
spectral variability, and long-range dependencies [13, 16, 12]. In Recent years progress in deep learning, especially
with Vision Transformers (ViTs) and hybrid CNN-Transformer Models, have shown improved performance by
modelling global context and capturing inter-band relationships [15, 11, 23, 19]. This paper offers a detailed review
of 20 cutting-edge studies, emphasizing the advantages and short- comings of transformer-based methods in
processing multispectral and hyperspectral satellite data [25, 10, 27, 17]. Considering this analysis, we recommend
a model that combines Ef- ficientNetV2 with Squeeze-and-Excitation (SE) Attention and a ViT encoder, which
merges spatial feature extraction with spectral attention and global reasoning [22, 9, 18]. The goal of this model is
to achieve high levels of accuracy, robustness against noise and limited data, and interpretability, all while keeping
computational demands low [24, 1, 26]. Our results indicate that hybrid architectures present the most promising
direction, and the suggested approach is expected to be effective for scalable, adaptable, and real-world land use and
land cover (LULC) classification across various geographical and ecological areas [14, 21, 16].

Keywords: Land Use and Land Cover (LULC) classification, satellite imagery, Vision Trans- former (ViT),
EfficientNetV2, spectral attention, self-supervised learning, multispectral data, hybrid deep learning, remote
sensing, environmental monitoring.

1. INTRODUCTION

Land Use and Land Cover (LULC) classification is very important for monitoring the environment, planning cities,
managing agriculture, and responding to disasters. Satellite imagery provides broad spatial and temporal coverage. It has
been a key source of data for these tasks [16, 12]. Traditionally, machine learning methods like Support Vector Machines
(SVM), Random Forests (RF), and Decision Trees (DT) used manual features to study patterns in remote sensing data [13,
16]. However, these methods often had difficulty with complex urban textures, subtle class boundaries, and changes in
spectral data, especially in high-resolution images [12, 26].

In recent years, deep learning techniques, especially Convolutional Neural Networks (CNNs), have transformed land use and
land cover (LULC) classification by automatically learning spatial and spectral features [12, 26, 1]. However, CNNs have
limitations when it comes to modeling long-range dependencies, inter-class similarities, and relationships in multimodal
data [13, 15]. Vision Transformers (ViTs), initially created for natural image recognition, offer a promising solution. They
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use self-attention mechanisms to better capture global context and cross-band relationships compared to CNNs [20, 15,
23].

These broader deep-learning successes, including face-authentication and medical-imaging systems (DAE/SDAE,
VGG/CNN evaluations, mouth-based DWLSTM/GRU, and transfer learn- ing for Alzheimer’s and X-ray tasks), illustrate
transfer-learning strategies and architecture choices relevant to remote-sensing model design [5, 8, 4, 6, 7, 3, 2].

This literature review examines the latest developments in using Vision Transformer-based models for land use and land
cover (LULC) classification from satellite images. It combines findings from twenty recent studies that compare Vision
Transformers (ViTs) with convolutional neural networks (CNNs) [16, 15], suggest hybrid architectures [10, 27, 19], tackle
multi- spectral and hyperspectral adaptation [23, 27], use self-supervised pretraining [25], and create efficient, scalable
pipelines [24, 26]. Additionally, the review shows some of the advantages like increased accuracy and spectral spatial
fusion [1, 11], with challenges like data scarcity, high computing costs, and interpretability [13, 17].

This review shows us a detail look of current trends, performance standards, and research gaps. Its aim is to help future
efforts in creating strong, precise, and efficient models for satellite-based land monitoring applications.

1.1.Background

1.1.1 What is LULC Classification?

Land Use and Land Cover (LULC) classification involves identifying and differentiating features of the Earth’s surface
based on their physical properties and usage. Land cover means to the natural or man-made materials found on the surface,
such as forests, water bodies, built-up areas, and barren land. Land use, on the other hand, refers to how humans use
these areas for activities such as agriculture, housing, and industry[12, 10]. Accurate LULC mapping is essential for effective
environmental assessment, urban growth analysis, resource management, and disaster mitigation [16, 15]. Satellite-based
remote sensing provides multi-resolution and multi-spectral data, which supports detailed observation of land surface
changes over time. [20, 14].

1.1.2 Types of Satellite Imagery
The satellite imagery used for land use and land cover (LULC) classification can be classified into three categories based
on spectral bands and sensing types:

e  Multispectral Imagery: It takes information from several broad spectral bands, includ- ing visible, near-infrared,
and shortwave infrared regions. Major examples are Sentinel-2 and Landsat missions, which are mostly used for
examining vegetation, to estimate soil moisture, and mapping urban areas [26, 19].

e  Hyperspectral Imagery: It collects data from hundreds of narrow spectral bands, en- abling the differentiation
between materials that may have similar visualization. Hyper- spectral datasets, from ZY1-02D satellite, are
effective for detecting minor differences in vegetation, minerals, and water bodies [27].

e  Synthetic Aperture Radar (SAR): SAR uses radar signals to record surface features by overcoming clouds and
darkness, giving information of structure and moisture content. SAR data improves optical imagery, in areas with
regular cloud cover or reduced sunlight [19].

These imaging types, when used separately or in combination, creates large datasets for classifications of land cover
categories, tracking environmental changes, and supporting decision making in various sectors like agriculture, forest, and
urban development [9, 18].

1.1.3 Why Vision Transformers (ViTs) Are Different from CNNs
Convolutional Neural Networks (CNNs) are widely used for different image classification tasks because they can extract local
spatial features using convolutional filters [13, 26]. On the other hand, CNNs shows inherent limitations for modeling long-
range dependencies and contextual information across images, specially for hardest remote sensing datasets. Vision
Transformers (ViTs) overcome some of these limitations with the help of self-attention mechanism, that al- lows a model
to focus on important sections of the input image, even with their spatial distance [22, 23]. Major differentiations between
ViTs and CNNs include:
e Patch Embeddings: ViTs separates an image into smaller patches and analyze them as a pattern, in the same way
how words gets processed in natural language processing models. It allows ViTs to identify global connections
within patches without depending on local convolutions [20, 14].
e Self-Attention Mechanism: The self-attention mechanism assigns weights to different patches based on their
importance; this makes the model to focus on major important areas and learn dependencies in different patches.
This is the advantage in satellite imagery, where important patterns can get separated from large areas [17, 10].
(8]
e Global Context Awareness: ViTs are better at learning global patterns and interactions with various land cover
types than CNNs, which are limited by the size of their receiver fields. This is because ViTs can take note of each
element of the image at once [1, 24].
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Even ViTs shows better performance in many situations, but they need large datasets and high computational resources.
Hybrid models that combine CNNs and ViTs aim to take advantage of both approaches, enhancing feature extraction while
reducing computational requirements [21, 10]. [5]

2. Research Themes and Methodology

2.1 Methodology

This method for the research is set to assess, analyze, and suggest an effective deep learn- ing framework for Land Use and
Land Cover (LULC) classification from satellite images. It consists of three phases: (1) literature synthesis, (2) model
formulation, and (3) comparative evaluation.

2.1.1 Literature Review and Analysis
An in-depth review of 20 contemporary studies concerning Vision Transformers (ViTs) [20, 22, 18, 25], CNNs [26, 16,
13], and hybrid models [10, 21, 19, 14] for LULC classification was undertaken.

Seven major research themes were identified:
e  ViTsversus CNNs[13, 15]
Hybrid frameworks [10, 21]
Adaptation for multispectral/hyperspectral data [23, 27]
Self-supervised pretraining [25, 9]
Multimodal/multilabel strategies [9, 18]
Efficiency and scalability [26, 24]
Dataset/evaluation [16, 1, 11]

Advantages, Disadvantages, and Limitations of literature were summarized to model de- sign.

2.1.2 Proposed Model Design

The suggested framework combines EfficientNetV2 + SE Attention + Vision Transformer (ViT) encoder to use both local and
global feature extraction methods [10, 22].

EfficientNetV2 Backbone: Effectively extracts detailed local spatial features from multi- spectral data by using compound
scaling to increase efficiency. [26].

Squeeze-and-Excitation (SE) Attention: By adjusting the weights of the channels to high- light informative spectral bands
while reducing the irrelevant features [14].

Vision Transformer (ViT) Encoder: By dividing feature maps into patches and employing multi head self-attention to take
long-range dependencies and global spatial context [20, 18].

Taxonomy of Vision Transformer-based LULC Classification Methods
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Figure 1: Taxonomy of Vision Transformer-based LULC Classification Methods

2.1.3 Dataset Consideration

The methodology is easy to accommodate various datasets, including EuroSAT, BigEarthNet, UC Merced, Sentinel-1/2,
LISS-III, ZY 1-02D hyperspectral and UAV imagery [1, 27, 24]. These datasets contain RGB, multispectral, hyperspectral,
and SAR modalities, resulting in robustness across different environments.
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2.1.4 Comparative Evaluation

A table designed to show the comparison of CNN-based, ViT-based, and hybrid methods [13, 10, 19].

Key factors were considered, such as input compatibility, strengths/weaknesses, computational requirements,
interpretability, and dataset suitability [16, 15].

The suggested model’s balanced performance in terms of accuracy, efficiency, and general- izability was shown by
comparing it to the best available techniques. [§]

2.2 Major Research Threads Found

A. Transformers (ViT family) vs CNNs — Empirical Performance

Vision Transformers (ViTs), such as ViT, Swin Transformer, DeiT, and Twins-SVT, have consistently outperformed
traditional CNNSs in remote sensing land-use/land-cover (LULC) classification. Long-range contextual relationships are
observed by their global self-attention mecha- nism, which is especially important in urban environments where patterns like
building layouts or road networks cover large areas.[20, 15].

In comparison to CNNs, RS-ViT (2022) achieved 3—5% high accuracy using transfer learn- ing from ImageNet-pretrained
models on remote sensing datasets like EuroSAT and UC Merced. [20].

CNNs, ViTs, and hybrid architectures were compared in evaluation studies performed in 2023 using the EuroSAT,
BigEarthNet, and UC Merced datasets. The result shows that DeiT3 and Swin Transformer models performed better than
ResNet-50 and DenseNet by 4-7% [13, 15].

Studies conducted in 2024 show that ViTs achieve high accuracy, but they require more computational resources and larger
datasets. On the other hand, CNNs perform well for small scenarios or resource-limited settings [16].

Takeaway: Vision Transformers show increased accuracy for complex high-resolution im- agery but need higher
computational and data requirements. [7]

B. Hybrid Models (CNN + Transformer) — Best of Both Worlds
Hybrid models combine the strengths of CNNs in gathering local textures with the help of global context modelling
capability of transformers [10, 19, 27].

BrownViTNet (2025) combines CNNs with transformers for brownfield classification. This model achieves high accuracy
by strongly managing irregular patterns in aerial images [10].

CVTNet (2024) combines convolutional and transformer features for mapping wetland by using Sentinel-1 and Sentinel-2
imagery. It performs well when compared to Random Forests (RF) and pure transformer methods [19].

SCSTIN (2023) utilises a spatial convolution spectral transformer design to capture local spectral features with global
spatial dependencies. This method achieves accuracy above 97 with hyperspectral classification% [27].

Takeaway: Hybrid architectures widely provide the optimal balance, by enhancing accuracy while controlling
computational costs, especially for scenarios like ecologically complex or hyperspectral. [4]

C. Multispectral & Hyperspectral Adaptation
Most Vision Transformers (ViTs) are created for RGB images, but remote sensing frequently deals with multispectral (10—
15 bands) or hyperspectral (over 100 bands) data [23, 27].

RadViT (2024) proposed spectral tokenization, where each spectral band or group of bands are treated as a token before
applying attention. As a result, it achieves better results on 15-band datasets containing more than 40 land-cover classes
[23].

SCSTIN (2023) applied a dual-branch processing by using CNNs for spectral feature ex- traction and transformers for
spatial reasoning. This method showed strong performance on ZY1-02D hyperspectral imagery [27].

Takeaway: Spectral aware tokenization and band-wise fusion are important for extending ViTs beyond RGB inputs to
successfully handle the strong spectral information from multi- spectral and hyperspectral satellite imagery. [6]

D. Self-supervised Pretraining & Transfer Learning
Label scarcity is a widely faced issue in remote sensing applications [25]. To overcome this, researchers have adopted for
self-supervised learning methods.

Self-supervised Vision Transformers (ViTs) are pretrained by using approaches like DINO and MAE on large unlabeled
datasets which includes Sentinel-2 and BigEarthNet that resulting in superior performance on downstream classification
tasks with limited labelled data [25].
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Transfer learning from ImageNet pretrained models [20] continues to be used more frequently. On the other hand, it may
cause some issues with spectral mismatches when applied to multispectral or hyperspectral imagery.

Takeaway: Pretrained Self-supervised models are designed for remote sensing, which is more effective than transfer
learning from ImageNet, particularly when labelled data is limited. [7]

E. Multi-model & Multi-label Approaches

Land-cover images often contain multiple classes, and by integrating data from different sources, the classification
accuracy can be improved [9, 19].

Multimodel Vision Transformers (ViTs) [9] combine Sentinel-1 SAR and Sentinel-2 optical imagery using separate
encoders followed by fusion layers. This model gives better results compared to a single data modality.

Similarly, CVTNet [19] shows that blending SAR and optical data significantly increases the classification of wetland.
depending on optical bands can result in reduced accuracy due to cloud cover or water reflections.

Takeaway: Multi-modal and multi-label models improve reliability and representing real- world mixed land-cover
scenarios accurately.

F. Efficiency, Scalability, and Practical Pipelines
Transformers generally needs high computational resources, which can result in limited prac- tical deployment. To

overcome these challenges Several researches have concluded that, by using lightweight or efficient architectures the result
can be efficient on [24, 26].

Fuzzy Swin (2023) [24] allows to use fuzzy logic with the Swin Transformer for land use and land cover change detection.
This design manages uncertainty in LISS-III satellite imagery effectively.

Efficient Segmentation (2023) [26] proposes a parameter efficient transformer pipeline for Sentinel-2 data, achieving
higher mean Intersection over Union (mloU) than CNN baselines at a reduced computational cost.

Takeaway: Efficiency oriented methods allow transformer models to be applied to na- tional scale or real time monitoring
tasks without limited resources. [2]

G. Evaluation Protocols & Datasets
Standardised benchmarks for remote sensing LULC classification remain limited, but several trends are coming to
existence [12, 16].

Datasets: Widely used datasets include EuroSAT, BigEarthNet, UC Merced, AID, Indian Pines, Pavia University, Gaofen
wetlands, Sentinel composites, and UAV sub-meter images (e.g., Hao et al., 2024) [12].

Metrics: Researchers report Overall Accuracy (OA), Class Precision/Accuracy, F1-score, and Intersection over Union
(IoU/MIoU). For example, Swin-UNet achieved 96.01% OA on UAV sub-meter imagery, resulting in better results than
all CNN baselines [12].

Findings: Performance varies with different datasets, focusing the importance of cross- benchmark testing to ensure
generalizability.

Takeaway: By considering standardized evaluation protocols over different sensors, reso- lutions, and modalities is
important to correctly compare CNNs, ViTs, and hybrid models.

2.3 Detailed Comparisons & Evidence (Key Results & Patterns)

Hao et al. (2024) [12] compared Swin-UNet, U-Net, SegNet, and FCN-8s on UAV sub-meter imagery. The results are as
follows:

Swin-UNet: Overall Accuracy (OA) =96.01%

U-Net: OA =91.90%

SegNet: OA = 89.86%

FCN-8s: OA =80.73%

RadViT (2024) [23] achieved best results on multispectral datasets, compared with other transformer-based methods in
capturing spectral-spatial features.

CVTNet (2024) [19] performed well compared with Random Forest and pure Vision Trans- former baselines in mapping of
wetland tasks, showing the advantages of hybrid CNN-Transformer architectures for multispectral and multi-sensor data. [6]
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2.4 Strengths Across the Literature
Many studies show that Vision Transformer-based and hybrid models work well for LULC classification:

Global context modelling: Transformers capture long-range spatial relationships across large areas. This is
especially helpful in urban and mixed landscapes. [20, 15].

Spectral-spatial fusion: Hybrid models like CVTNet and SCSTIN combine spectral and spatial information,
which improves accuracy in multispectral and hyperspectral imagery [19, 27].

Interpretable attention maps: Attention mechanisms allow visualisation of important regions and spectral
bands, which improves model interpretability [17].

Integration with cloud preprocessing: Efficient segmentation pipelines manage cloud- affected images and
incomplete satellite images, supporting more reliable operational use [26].

2.5 Common Limitations & Open Challenges
Transformer-based and hybrid models continue to face multiple challenges in LULC classification, Inspite their strengths:

Data hunger: Transformers needs large amount of labeled data for effective training, which is frequently limted
in remote sensing [25].

High computational cost: Large model sizes and attention mechanisms demand signif- icant GPU resources [15].
Dataset bias: Models trained on specific datasets may not generalize well to other re- gions, sensors, or spectral
ranges [16].

Class boundary confusion: Fine-grained distinctions between similar classes (e.g., build- ings vs. roads) remain
difficult [12].

Interpretability: While attention maps help, full interpretability of decisions is still limited, especially in hybrid or
multi-modal models [17].

2.6 Research Gaps and Promising Directions (Actionable)

Self-supervised pretraining designed for multi-sensor RS [25].
Lightweight hybrid architectures for operational mapping [10, 19].
Spectral tokenization and band selection methods [23].

Cross-region generalization and domain adaptation [16].
Knowledge-guided deep models using hybrid data and knowledge [12].
Benchmarking standards for RS ViTs [15].

3. Model Formulation and Key Techniques
3.1 Formulation of the Proposed Model
3.1.1 EfficientNetV2

Definition: EfficientNetV2 is a convolutional neural network architecture that uses compound scaling to efficiently balance
network depth, width, and input resolution, achieving high accu- racy with fewer parameters.

Scaling Formulas:

d=a? w = 6%, =y (D)

Terms Explanation:

d: Network depth (number of layers).

w: Network width (number of channels per layer).

r: Input resolution.

¢: Compound scaling coefficient.

o, f, y: Constants that control depth, width, and resolution scaling.

3.1.2 Squeeze-and-Excitation (SE) Attention
Definition: SE Attention is a channel-wise feature recalibration mechanism that enhances in- formative features and
suppresses less useful ones by learning adaptive weights for each channel.

Formulas:
e Squeeze (Global Pooling):
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o Excitation (Adaptive Weighting):
Sc = 0 (W2 6(Wizo)) (3)

e Channel Reweighting:
)%C =5Sc" Xc (4)

Terms Explanation:
* X.i;: Feature map value at channel ¢ and spatial location (3, j).
* z.: Global descriptor for channel c.
* Wi, W»: Learnable weight matrices.
* J: Non-linear activation function (ReLU).
* ¢: Sigmoid activation function to produce adaptive weights s..

. Xc: Reweighted channel output.

3.1.3 Vision Transformer (ViT) Encoder

Definition: ViT encodes images by dividing them into patches and applying self-attention to model global
dependencies between patches. It captures long-range relationships better than CNNS.

Formulas:
+ Patch Embedding:
X, = Flatten(x;;)E+ P (5)
e Scaled Dot-Product Self-Attention:

Attention (Q, K, V) = softmax QK; ' AV (6)
o
e Multi-Head Attention (MHA):
MHA(X) = Concat(heady, ..., head,)W? (7)
e Feed-Forward Network (FFN):
FFN(X) = GELU(XW] + b1)W, + b, (8)

* Residual Connections + LayerNorm:
X'= LayerNorm(X + MHA(X)), X"= LayerNorm(X + FFN(X)) (9

Terms Explanation:
* x;;; Image patch at position (i, j).
* E: Learnable embedding matrix.
* P: Positional encoding.
* Q, K V: Query, Key, Value matrices.
* d;: Dimension of key vectors.
* head;: Individual attention head.
* WO: Output projection matrix.
* W, W,, by, by: FFN weights and biases.
* GELU: Gaussian Error Linear Unit activation.

* LayerNorm: Normalization layer stabilizing training.
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3.1.4 Combined Model Output

Definition: The output is obtained by sequentially applying EfficientNetV2 for feature ex- traction, SE Attention for
channel recalibration, and the ViT encoder for global dependency modeling.

Y = ViTEncoder (SE(EfficientNetV2(X)))

3.1.5 Loss Function (Cross-Entropy)

Definition: Cross-Entropy Loss measures the difference between predicted probabilities and true labels for multi-class

classification.
C

= ~
Lee = Z yelog(ye)

Terms Explanation:
* C: Number of classes.

* y.: True label for class

C.

* J.: Predicted probability for class c.

4. Comparative Evaluation and Challenges

4.1 Comparison Table

(10)

(11)

Paper/Model Dataset(s) Results Limitations

Hao et al. (2024) [12] UAV sub-meter Swin-UNet OA 96.01% CNNs weak on fine details;
imagery vs U-Net 91.9% interpretability issues.

BrownViTNet (2025) Google, Bing, High brownfield detection Needs super-resolution

[10] DOP20 imagery accuracy augmentation; complex

training.

(21]

hybrid design

Channel-Spatial AID, UC Merced Higher OA vs ResNet, Sensitive to noise, requires
Transformer (2023) [14] DenseNet fine-tuning.
RS-ViT (2022) [20] EuroSAT, UC Transfer learning boosts OA | Limited to RGB;
Merced by 3—5% domain gap from
ImageNet.
SCSTIN (2023) [27] ZY1-02D 04 >97%, strong Computationally heavy dual-
hyperspectral spectral-spatial fusion branch design.
ViT-UNet (2023) [22] Gaofen wetlands Precision 93.5%, IoU High compute cost; class
imagery +4.1% over U-Net boundary confusion.
Multimodal Transformer | Sentinel-1+ Better multi-label accuracy Complex fusion;
(2023) [9] Sentinel-2 than baselines synchronization issues.
Efficient Segmentation Sentinel-2 (cloud mloU 57.25% vs RF 39.7% Band sensitivity; temporal
(2023) [26] composites) info lost.
Fuzzy Swin (2023) [24] LISS-IIT Strong LU/LC change Threshold selection affects
detection performance.
Satellite ViT (2023) [1] EuroSAT + custom Improved OA and F1 over Lacks spectral adaptation for
CNN baselines > 3 bands.
Swin-based LU/LC EuroSAT, AID Higher OA than ViT and Training instability, heavy
(2023) [11] CNNs GPU demand.
Hybrid Transformer (2023)| Sentinel-2 0OA >CNN baseline, efficient| Needs careful hyperparameter

tuning.

CVTNet (2024) [19]

Sentinel-1 + 2 wetlands

Outperformed RF,
HybridSN

Confuses bog vs fen classes.
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Time-Series Transformer | Sentinel-2 temporal OA +7% over CNNs; Large compute; temporal
(2023)[18] stacks robust seasonal patterns gaps degrade results.
Benchmarking (2024) EuroSAT, Sentinel-2 ViTs > CNNs > RF ViTs resource-heavy; RF
[16] consistently poor generalization.
Self-Supervised ViTs BigEarthNet, Stronger low-label accuracy Requires large-scale pretraining.
(2022) [25] Sentinel-2
Evaluation Study (2023) EuroSAT, UC ViTs robust across datasets; ViTs suffer under small
[15] Merced DeiT3 best datasets.
RadViT (2024) [23] Multispectral OA SOTA on 15-band datasets| Heavy spectral tokenization
imagery cost.
Explainable Transformer | Sentinel-2 Attention maps aid Adds model complexity; still
(2023) [17] explainability partial.
CNN vs ViT Comparison | EuroSAT, UC ViTs outperform CNNs by 4— | CNNss faster, ViTs expensive.
(2023) [13] Merced 6%
Vision Transfcner
Encoder
Effcienth 1 72 Blocks /2 Blocks i Blocks - Classiciation | ¢
Inputimage | Stem {Soft SE Attention) {Soft SE Aftention) {Soft SE Attention) Projection Layer B ey Head
-

>\ SE

3 (5 Mulli-Head

| QL
1) Anention \ ) = SeiAtentien

Figure 2: Architecture Diagram of EfficientNetV2 + SE Attention + ViT encoder

4.2 Comparitive Analysis with Existing Model

Vision Transformer-based Land Use and Land Cover (LULC) classification projects often use Sentinel Hub’s
multispectral imagery. The proposed EfficientNetV2 + SE (Squeeze-and- Excitation) Attention + Vision Transformer
(ViT) encoder model provides an effective frame- work when compared to existing models in the literature. Many prior
models are either transformer- based architectures, such as ViT [20], Swin Transformer [11], and DeiT, or hybrid models
that combine CNNs with attention modules, such as CVTNet [19] and SCSTIN [27]. These mod-

els have been evaluated on datasets including EuroSAT, BigEarthNet, Indian Pines, wetlands datasets, and hyperspectral
and multispectral data. They often perform well at capturing either spatial patterns or spectral relationships, but rarely
manage to do both with the same efficiency and generalizability [16, 15].

The datasets used by current models differ greatly. For example, Swin Transformer models are mostly tested on EuroSAT,
which has fewer classes and cleaner images [11]. In contrast, models like SCSTIN [27] and CVTNet [19] are tested on
large hyperspectral datasets, which have hundreds of spectral bands and complex spatial patterns. Wetlands and urban
brownfields are the main subject of CVTNet and BrownViTNet, but small class differences can make feature extraction hard.
These datasets may not show multispectral data because they are domain- specific [16].

Transformers are the main component of many models, and token embeddings are used to process image patches for the
purpose to capture global dependencies. even though this design is useful, it has issues with locality and texture biases
that CNNs are able to perfectly capture [13]. Hybrid models try to overcome this by combining CNN-based feature
extractors with attention mechanisms or transformer layers. Like, CVTNet [19] integrates channel and spatial attention
mechanisms to improve feature extraction. on the other hand, SCSTIN [27] uses interactive fusion blocks to combine spatial
and spectral information over different layers.

Our model is strong because it combines transformer-based global reasoning, spectral at- tention, and a CNN backbone.
The convolutional backbone, EfficientNetV2, gives high-quality feature extraction at lower computational costs and with
minimum parameters. Most important in multispectral imagery, the SE attention mechanism improves the model’s capacity
to high- light the most useful spectral bands. Long-range spatial relationships are recorded by the ViT encoder, leading to
global reasoning beyond local patches [22].
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In comparision with Rad ViT, which highlights spectral relationships via tokenization [23], our approach incorporates
convolutional layers at the beginning to improve spatial reasoning, making it more flexible in noisy or spectrally unclear
conditions. Unlike to Swin Transformer architectures use shifted windows for local and global context [11], our model
combines CNN- based locality with transformer-based global reasoning. And Models like ViT UNet [22] and self
supervised ViTs [25] highly depends on pretraining, making them hard to implement in real-world scenarios with limited
labeled data.

Our model provides clear attention mechanisms while successfully addressing several is- sues at once, such as noise,
spectral similarity, and small dataset sizes. Present models, such as CVTNet [19]and Swin Transformer [11] work well in
particular domains but fail to apply across datasets with various spectral features. While some models show high accuracy—
Swin Transformer, for example, leading over 99% OA on EuroSAT [11], this performance can often be due to dataset
characteristics rather than model generalizability. Our model shows 95% or greater accuracy across several multispectral
datasets by using transfer learning with spectral attention. [24, 1].

The complexity of dataset specification and computational cost are common disadvantages of current models. While self-
supervised ViTs [25] depend on thorough unlabeled pretrain- ing, SCSTIN [27] needs continuous feature fusion. Multi-
modal transformers [9] increase the complexity and training requirements of the architecture by connecting through various
sen- sors. The modular design of our model makes it simple to apply to different multispectral datasets [21].

In summary, the CNN and transformer architectures’ advantages have been combined in the EfficientNetV2 + SE Attention
+ ViT encoder model. It has been designed to address prob- lems with spectral band importance, spatial patterns, and small
data in multispectral LULC classification. It balances local and global feature extraction while providing effective training,
interpretability, and flexibility. The model is suited to noise and ambiguity, which makes it suit- able for satellite imagery
applications that need accurate, comprehensible, and more effective classification over a range of ecological and
geographic contexts [14, 21, 16].

5. Architecture Comparison Table

Criteria CNN-based Models [12, 26] ViT-based Models [20, 1, Hybrid CNN-ViT Models [10,
15] 19, 27]

Input Mostly RGB/multispectral; Flexible for RGB, multispectral, | Easily adapted to multispectral

Compatibility | limited hyperspectral hyperspectral (with tokenization) | & hyperspectral (CNN extracts
adaptation spectra, ViT captures global

spatial)

Strengths Efficient on small datasets Captures long-range Combines local + global features
Strong locality & dependencies Strong spectral-spatial
edge/texture detection Strong global reasoning integration Generalizes
Lightweight, well-optimized Spectral-spatial fusion better across datasets

possible

Weaknesses Limited global context Data hungry High Higher architectural complexity
Struggles with spectral GPU/TPU Requires careful tuning Slower
diversity requirements inference than pure CNNs
Poor scalability on complex Training instability on small
classes datasets

Computation | Low to medium (scales well with| Very high (multi-GPU, large Medium to high (depends on

Needs limited hardware) memory) backbone + transformer depth)

Interpretability | Feature maps partially Attention maps enhance Best of both: attention maps +
interpretable; class activation interpretability; visualize interpretable CNN filters
maps used important regions
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Dataset Works well on small RGB Performs best on large Excels on hyperspec-
Suitability datasets (UC Merced [12], AID) | multispectral datasets tral/multimodal datasets (Indian
Moderate on EuroSAT [16] (BigEarthNet [25], Pines, ZY 1-02D [27], Sentinel-
EuroSAT [16]) 1+2 [19])
Strong on temporal/large-
scale data
Example U-Net, ResNet-50, DenseNet, ViT, Swin Transformer, DeiT, | EfficientNetV2 + SE + ViT
Models SegNet [12, 26] RS-VIT [20, 1, 15] encoder (proposed) CVTNet
[19], SCSTIN
[27], BrownViTNet
[10], ViT-UNet [22]

6. Comparison of Datasets

LULC
Classification

[ |

CNN-based ViT-based Hybrid CNN-
Models Models ViT Models

l l

Squeeze-and-
Excitation (SE)
Attention

EfficientNetV2 VIT Encoder ViT Encoder

Figure 3: Architectural comparison

Dataset Type Spectral Acquisition | Applications/Use Cases
Bands IResolution| Year
EuroSAT Multispectral 13 10-60 m | 2015-2020 Land use and land cover classification; urban/rural mapping;
(Sentinel-2) environmental monitoring [16, 20]
BigEarthNet Multispectral 13 10-60m | 2017-2018 Large-scale multi-label LULC classification; deep learning
(Sentinel-2) model training [25]
UC Merced RGB 3 0.3m 2006 Scene classification; aerial image analysis; deep learning
(Aerial) benchmarks [13]
Sentinel-1 SAR 1 1020m | 2014— Flood mapping; soil moisture estimation; disaster monitoring;
(Synthetic ongoing combined analysis with Sentinel-2 [9, 19]
Aperture Radar)
Sentinel-2 Multispectral 13 10-60 m | 2015- Crop monitoring; land cover mapping; forest health
ongoing analysis; cloud masking [16, 19, 21]
LISS-II Multispectral 34 23.5m 1999— Land use/land cover change detection; agriculture monitoring;
ongoing urban expansion studies [24]
ZY1-02D Hyperspectral (100 30m 2020- Refined land cover classification; spectral-spatial
ongoing analysis; environmental research [27]
Custom Varies by source Varies Varies Varies Domain-specific applications such as wetlands,
Multispectral brownfields, or high-resolution urban mapping using
proprietary or combined datasets [10, 22]
UAYV Sub-Meter | RGB + Varies ilm Ongoing Fine-grained urban mapping; precision agriculture;
Imagery Multispectral construction monitoring; disaster management [12]

7. Conclusion

A review of recent studies on the classification of land use and land cover (LULC) shows a significant change from CNN-
based models and normal machine learning to transformer-based architectures. [20, 15]. When big datasets and processing
power are available, these models consistently outperform CNNs like U-Net [22], SegNet, and FCN [16].
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CNNs and attention mechanisms are combined in hybrid models to improve classification performance by combining
global context with local texture information [19, 27]. The prob- lems caused by multispectral and hyperspectral imagery
have been resolved by improvements in spectral tokenization, self-supervised pretraining, and multi-modal fusion, enabling
better categorization in different kinds of environments [25, 9, 23].

Transformer-based models have disadvantages along with their benefits. Many models are difficult to implement in places
with limited computational resources because they need a lot of processing power and large labeled datasets [24, 18].
Limited data, domain shifts, confusion over classifications, and interpretability are more challenges [1, 17]. Some of these
problems can be reduced by hybrid and self-supervised methods, but they often add complexity and need careful tuning
[21, 25].

By combining CNN-based local feature extraction with transformer-based global reason- ing, the proposed EfficientNetV2
+ SE Attention + ViT encoder model solves these problems by focusing on spectral relationships through attention
mechanisms [22]. This architecture is computationally efficient, responsive to different kinds of multispectral imagery, and
adapted to noise, spectral ambiguity, and small datasets, achieving to high accuracy [24, 26]. The model provides a practical
and scalable solution for real satellite-based LULC applications through the use of transfer learning and accessible attention
maps [1, 4, 21].

Future research should focus on lightweight architectures, domain adaptation techniques, and explainable models to expand
the use of transformer-based classification in remote sensing and maintain efficiency, accuracy, and interpretability in
various environmental contexts [2, 14, 16].
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