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1. INTRODUCTION 
Land Use and Land Cover (LULC) classification is very important for monitoring the environment, planning cities, 

managing agriculture, and responding to disasters. Satellite imagery provides broad spatial and temporal coverage. It has 

been a key source of data for these tasks [16, 12]. Traditionally, machine learning methods like Support Vector Machines 

(SVM), Random Forests (RF), and Decision Trees (DT) used manual features to study patterns in remote sensing data [13, 

16]. However, these methods often had difficulty with complex urban textures, subtle class boundaries, and changes in 

spectral data, especially in high-resolution images [12, 26]. 
 

In recent years, deep learning techniques, especially Convolutional Neural Networks (CNNs), have transformed land use and 

land cover (LULC) classification by automatically learning spatial and spectral features [12, 26, 1]. However, CNNs have 

limitations when it comes to modeling long-range dependencies, inter-class similarities, and relationships in multimodal 

data [13, 15]. Vision Transformers (ViTs), initially created for natural image recognition, offer a promising solution. They 
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Abstract 

Classifying Land Use and Land Cover (LULC) using satellite imagery is important for environ- mental observation, 

urban planning, and disaster management. Traditional machine learning techniques and convolutional neural 

networks (CNNs) have been widely used in this domain, but they still face problems with complex spatial patterns, 

spectral variability, and long-range dependencies [13, 16, 12]. In Recent years progress in deep learning, especially 

with Vision Transformers (ViTs) and hybrid CNN-Transformer Models, have shown improved performance by 

modelling global context and capturing inter-band relationships [15, 11, 23, 19]. This paper offers a detailed review 

of 20 cutting-edge studies, emphasizing the advantages and short- comings of transformer-based methods in 

processing multispectral and hyperspectral satellite data [25, 10, 27, 17]. Considering this analysis, we recommend 

a model that combines Ef- ficientNetV2 with Squeeze-and-Excitation (SE) Attention and a ViT encoder, which 

merges spatial feature extraction with spectral attention and global reasoning [22, 9, 18]. The goal of this model is 

to achieve high levels of accuracy, robustness against noise and limited data, and interpretability, all while keeping 

computational demands low [24, 1, 26]. Our results indicate that hybrid architectures present the most promising 

direction, and the suggested approach is expected to be effective for scalable, adaptable, and real-world land use and 

land cover (LULC) classification across various geographical and ecological areas [14, 21, 16]. 

Keywords: Land Use and Land Cover (LULC) classification, satellite imagery, Vision Trans- former (ViT), 

EfficientNetV2, spectral attention, self-supervised learning, multispectral data, hybrid deep learning, remote 

sensing, environmental monitoring. 
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use self-attention mechanisms to better capture global context and cross-band relationships compared to CNNs [20, 15, 

23]. 

These broader deep-learning successes, including face-authentication and medical-imaging systems (DAE/SDAE, 

VGG/CNN evaluations, mouth-based DWLSTM/GRU, and transfer learn- ing for Alzheimer’s and X-ray tasks), illustrate 

transfer-learning strategies and architecture choices relevant to remote-sensing model design [5, 8, 4, 6, 7, 3, 2]. 

This literature review examines the latest developments in using Vision Transformer-based models for land use and land 

cover (LULC) classification from satellite images. It combines findings from twenty recent studies that compare Vision 

Transformers (ViTs) with convolutional neural networks (CNNs) [16, 15], suggest hybrid architectures [10, 27, 19], tackle 

multi- spectral and hyperspectral adaptation [23, 27], use self-supervised pretraining [25], and create efficient, scalable 

pipelines [24, 26]. Additionally, the review shows some of the advantages like increased accuracy and spectral spatial 

fusion [1, 11], with challenges like data scarcity, high computing costs, and interpretability [13, 17]. 

This review shows us a detail look of current trends, performance standards, and research gaps. Its aim is to help future 

efforts in creating strong, precise, and efficient models for satellite-based land monitoring applications. 

1.1.Background 

1.1.1 What is LULC Classification? 
Land Use and Land Cover (LULC) classification involves identifying and differentiating features of the Earth’s surface 

based on their physical properties and usage. Land cover means to the natural or man-made materials found on the surface, 

such as forests, water bodies, built-up areas, and barren land. Land use, on the other hand, refers to how humans use 

these areas for activities such as agriculture, housing, and industry[12, 10].Accurate LULC mapping is essential for effective 

environmental assessment, urban growth analysis, resource management, and disaster mitigation [16, 15]. Satellite-based 

remote sensing provides multi-resolution and multi-spectral data, which supports detailed observation of land surface 

changes over time. [20, 14]. 
 

1.1.2 Types of Satellite Imagery 
The satellite imagery used for land use and land cover (LULC) classification can be classified into three categories based 

on spectral bands and sensing types: 

• Multispectral Imagery: It takes information from several broad spectral bands, includ- ing visible, near-infrared, 

and shortwave infrared regions. Major examples are Sentinel-2 and Landsat missions, which are mostly used for 

examining vegetation, to estimate soil moisture, and mapping urban areas [26, 19]. 

• Hyperspectral Imagery: It collects data from hundreds of narrow spectral bands, en- abling the differentiation 

between materials that may have similar visualization. Hyper- spectral datasets, from ZY1-02D satellite, are 

effective for detecting minor differences in vegetation, minerals, and water bodies [27]. 

• Synthetic Aperture Radar (SAR): SAR uses radar signals to record surface features by overcoming clouds and 

darkness, giving information of structure and moisture content. SAR data improves optical imagery, in areas with 

regular cloud cover or reduced sunlight [19]. 
 

These imaging types, when used separately or in combination, creates large datasets for classifications of land cover 

categories, tracking environmental changes, and supporting decision making in various sectors like agriculture, forest, and 

urban development [9, 18]. 
 

1.1.3 Why Vision Transformers (ViTs) Are Different from CNNs 
Convolutional Neural Networks (CNNs) are widely used for different image classification tasks because they can extract local 

spatial features using convolutional filters [13, 26]. On the other hand, CNNs shows inherent limitations for modeling long-

range dependencies and contextual information across images, specially for hardest remote sensing datasets. Vision 

Transformers (ViTs) overcome some of these limitations with the help of self-attention mechanism, that al- lows a model 

to focus on important sections of the input image, even with their spatial distance [22, 23]. Major differentiations between 

ViTs and CNNs include: 

• Patch Embeddings: ViTs separates an image into smaller patches and analyze them as a pattern, in the same way 

how words gets processed in natural language processing models. It allows ViTs to identify global connections 

within patches without depending on local convolutions [20, 14]. 

• Self-Attention Mechanism: The self-attention mechanism assigns weights to different patches based on their 

importance; this makes the model to focus on major important areas and learn dependencies in different patches. 

This is the advantage in satellite imagery, where important patterns can get separated from large areas [17, 10]. 

[8] 

• Global Context Awareness: ViTs are better at learning global patterns and interactions with various land cover 

types than CNNs, which are limited by the size of their receiver fields. This is because ViTs can take note of each 

element of the image at once [1, 24]. 
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Even ViTs shows better performance in many situations, but they need large datasets and high computational resources. 

Hybrid models that combine CNNs and ViTs aim to take advantage of both approaches, enhancing feature extraction while 

reducing computational requirements [21, 10]. [5] 
 

2. Research Themes and Methodology 

2.1 Methodology 
This method for the research is set to assess, analyze, and suggest an effective deep learn- ing framework for Land Use and 

Land Cover (LULC) classification from satellite images. It consists of three phases: (1) literature synthesis, (2) model 

formulation, and (3) comparative evaluation. 
 

2.1.1 Literature Review and Analysis 
An in-depth review of 20 contemporary studies concerning Vision Transformers (ViTs) [20, 22, 18, 25], CNNs [26, 16, 

13], and hybrid models [10, 21, 19, 14] for LULC classification was undertaken. 
 

Seven major research themes were identified: 

• ViTs versus CNNs [13, 15] 

• Hybrid frameworks [10, 21] 

• Adaptation for multispectral/hyperspectral data [23, 27] 

• Self-supervised pretraining [25, 9] 

• Multimodal/multilabel strategies [9, 18] 

• Efficiency and scalability [26, 24] 

• Dataset/evaluation [16, 1, 11] 
 

Advantages, Disadvantages, and Limitations of literature were summarized to model de- sign. 

 

2.1.2 Proposed Model Design 
The suggested framework combines EfficientNetV2 + SE Attention + Vision Transformer (ViT) encoder to use both local and 

global feature extraction methods [10, 22]. 

EfficientNetV2 Backbone: Effectively extracts detailed local spatial features from multi- spectral data by using compound 

scaling to increase efficiency. [26]. 

Squeeze-and-Excitation (SE) Attention: By adjusting the weights of the channels to high- light informative spectral bands 

while reducing the irrelevant features [14]. 

Vision Transformer (ViT) Encoder: By dividing feature maps into patches and employing multi head self-attention to take 

long-range dependencies and global spatial context [20, 18]. 

Figure 1: Taxonomy of Vision Transformer-based LULC Classification Methods 
 

2.1.3 Dataset Consideration 
The methodology is easy to accommodate various datasets, including EuroSAT, BigEarthNet, UC Merced, Sentinel-1/2, 

LISS-III, ZY1-02D hyperspectral and UAV imagery [1, 27, 24]. These datasets contain RGB, multispectral, hyperspectral, 

and SAR modalities, resulting in robustness across different environments. 
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2.1.4 Comparative Evaluation 
A table designed to show the comparison of CNN-based, ViT-based, and hybrid methods [13, 10, 19]. 

Key factors were considered, such as input compatibility, strengths/weaknesses, computational requirements, 

interpretability, and dataset suitability [16, 15]. 

The suggested model’s balanced performance in terms of accuracy, efficiency, and general- izability was shown by 

comparing it to the best available techniques. [8] 

 

2.2 Major Research Threads Found 

A. Transformers (ViT family) vs CNNs — Empirical Performance 
Vision Transformers (ViTs), such as ViT, Swin Transformer, DeiT, and Twins-SVT, have consistently outperformed 

traditional CNNs in remote sensing land-use/land-cover (LULC) classification. Long-range contextual relationships are 

observed by their global self-attention mecha- nism, which is especially important in urban environments where patterns like 

building layouts or road networks cover large areas.[20, 15]. 

In comparison to CNNs, RS-ViT (2022) achieved 3–5% high accuracy using transfer learn- ing from ImageNet-pretrained 

models on remote sensing datasets like EuroSAT and UC Merced. [20]. 

CNNs, ViTs, and hybrid architectures were compared in evaluation studies performed in 2023 using the EuroSAT, 

BigEarthNet, and UC Merced datasets. The result shows that DeiT3 and Swin Transformer models performed better than 

ResNet-50 and DenseNet by 4–7% [13, 15]. 

Studies conducted in 2024 show that ViTs achieve high accuracy, but they require more computational resources and larger 

datasets. On the other hand, CNNs perform well for small scenarios or resource-limited settings [16]. 

Takeaway: Vision Transformers show increased accuracy for complex high-resolution im- agery but need higher 

computational and data requirements. [7] 

B. Hybrid Models (CNN + Transformer) — Best of Both Worlds 
Hybrid models combine the strengths of CNNs in gathering local textures with the help of global context modelling 

capability of transformers [10, 19, 27]. 

BrownViTNet (2025) combines CNNs with transformers for brownfield classification. This model achieves high accuracy 

by strongly managing irregular patterns in aerial images [10]. 

CVTNet (2024) combines convolutional and transformer features for mapping wetland by using Sentinel-1 and Sentinel-2 

imagery. It performs well when compared to Random Forests (RF) and pure transformer methods [19]. 

SCSTIN (2023) utilises a spatial convolution spectral transformer design to capture local spectral features with global 

spatial dependencies. This method achieves accuracy above 97 with hyperspectral classification% [27]. 

Takeaway: Hybrid architectures widely provide the optimal balance, by enhancing accuracy while controlling 

computational costs, especially for scenarios like ecologically complex or hyperspectral. [4] 

C. Multispectral & Hyperspectral Adaptation 
Most Vision Transformers (ViTs) are created for RGB images, but remote sensing frequently deals with multispectral (10–

15 bands) or hyperspectral (over 100 bands) data [23, 27]. 

RadViT (2024) proposed spectral tokenization, where each spectral band or group of bands are treated as a token before 

applying attention. As a result, it achieves better results on 15-band datasets containing more than 40 land-cover classes 

[23]. 

SCSTIN (2023) applied a dual-branch processing by using CNNs for spectral feature ex- traction and transformers for 

spatial reasoning. This method showed strong performance on ZY1-02D hyperspectral imagery [27]. 

Takeaway: Spectral aware tokenization and band-wise fusion are important for extending ViTs beyond RGB inputs to 

successfully handle the strong spectral information from multi- spectral and hyperspectral satellite imagery. [6] 

D. Self-supervised Pretraining & Transfer Learning 
Label scarcity is a widely faced issue in remote sensing applications [25]. To overcome this, researchers have adopted for 

self-supervised learning methods. 

Self-supervised Vision Transformers (ViTs) are pretrained by using approaches like DINO and MAE on large unlabeled 

datasets which includes Sentinel-2 and BigEarthNet that resulting in superior performance on downstream classification 

tasks with limited labelled data [25]. 
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Transfer learning from ImageNet pretrained models [20] continues to be used more frequently. On the other hand, it may 

cause some issues with spectral mismatches when applied to multispectral or hyperspectral imagery. 

Takeaway: Pretrained Self-supervised models are designed for remote sensing, which is more effective than transfer 

learning from ImageNet, particularly when labelled data is limited. [7] 

E. Multi-model & Multi-label Approaches 
Land-cover images often contain multiple classes, and by integrating data from different sources, the classification 

accuracy can be improved [9, 19]. 

Multimodel Vision Transformers (ViTs) [9] combine Sentinel-1 SAR and Sentinel-2 optical imagery using separate 

encoders followed by fusion layers. This model gives better results compared to a single data modality. 

Similarly, CVTNet [19] shows that blending SAR and optical data significantly increases the classification of wetland. 

depending on optical bands can result in reduced accuracy due to cloud cover or water reflections. 

Takeaway: Multi-modal and multi-label models improve reliability and representing real- world mixed land-cover 

scenarios accurately. 

F. Efficiency, Scalability, and Practical Pipelines 
Transformers generally needs high computational resources, which can result in limited prac- tical deployment. To 

overcome these challenges Several researches have concluded that, by using lightweight or efficient architectures the result 

can be efficient on [24, 26]. 

Fuzzy Swin (2023) [24] allows to use fuzzy logic with the Swin Transformer for land use and land cover change detection. 

This design manages uncertainty in LISS-III satellite imagery effectively. 

Efficient Segmentation (2023) [26] proposes a parameter efficient transformer pipeline for Sentinel-2 data, achieving 

higher mean Intersection over Union (mIoU) than CNN baselines at a reduced computational cost. 

Takeaway: Efficiency oriented methods allow transformer models to be applied to na- tional scale or real time monitoring 

tasks without limited resources. [2] 

G. Evaluation Protocols & Datasets 
Standardised benchmarks for remote sensing LULC classification remain limited, but several trends are coming to 

existence [12, 16]. 

Datasets: Widely used datasets include EuroSAT, BigEarthNet, UC Merced, AID, Indian Pines, Pavia University, Gaofen 

wetlands, Sentinel composites, and UAV sub-meter images (e.g., Hao et al., 2024) [12]. 

Metrics: Researchers report Overall Accuracy (OA), Class Precision/Accuracy, F1-score, and Intersection over Union 

(IoU/MIoU). For example, Swin-UNet achieved 96.01% OA on UAV sub-meter imagery, resulting in better results than 

all CNN baselines [12]. 

Findings: Performance varies with different datasets, focusing the importance of cross- benchmark testing to ensure 

generalizability. 

Takeaway: By considering standardized evaluation protocols over different sensors, reso- lutions, and modalities is 

important to correctly compare CNNs, ViTs, and hybrid models. 

 

2.3 Detailed Comparisons & Evidence (Key Results & Patterns) 
Hao et al. (2024) [12] compared Swin-UNet, U-Net, SegNet, and FCN-8s on UAV sub-meter imagery. The results are as 

follows: 

• Swin-UNet: Overall Accuracy (OA) = 96.01% 

• U-Net: OA = 91.90% 

• SegNet: OA = 89.86% 

• FCN-8s: OA = 80.73% 
 

RadViT (2024) [23] achieved best results on multispectral datasets, compared with other transformer-based methods in 

capturing spectral-spatial features. 
 

CVTNet (2024) [19] performed well compared with Random Forest and pure Vision Trans- former baselines in mapping of 

wetland tasks, showing the advantages of hybrid CNN-Transformer architectures for multispectral and multi-sensor data. [6] 
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2.4 Strengths Across the Literature 
Many studies show that Vision Transformer-based and hybrid models work well for LULC classification: 

• Global context modelling: Transformers capture long-range spatial relationships across large areas. This is 

especially helpful in urban and mixed landscapes. [20, 15]. 

• Spectral-spatial fusion: Hybrid models like CVTNet and SCSTIN combine spectral and spatial information, 

which improves accuracy in multispectral and hyperspectral imagery [19, 27]. 

• Interpretable attention maps: Attention mechanisms allow visualisation of important regions and spectral 

bands, which improves model interpretability [17]. 

• Integration with cloud preprocessing: Efficient segmentation pipelines manage cloud- affected images and 

incomplete satellite images, supporting more reliable operational use [26]. 

2.5 Common Limitations & Open Challenges 
Transformer-based and hybrid models continue to face multiple challenges in LULC classification, Inspite their strengths: 

• Data hunger: Transformers needs large amount of labeled data for effective training, which is frequently limted 

in remote sensing [25]. 

• High computational cost: Large model sizes and attention mechanisms demand signif- icant GPU resources [15]. 

• Dataset bias: Models trained on specific datasets may not generalize well to other re- gions, sensors, or spectral 

ranges [16]. 

• Class boundary confusion: Fine-grained distinctions between similar classes (e.g., build- ings vs. roads) remain 

difficult [12]. 

• Interpretability: While attention maps help, full interpretability of decisions is still limited, especially in hybrid or 

multi-modal models [17]. 
 

2.6 Research Gaps and Promising Directions (Actionable) 
• Self-supervised pretraining designed for multi-sensor RS [25]. 

• Lightweight hybrid architectures for operational mapping [10, 19]. 

• Spectral tokenization and band selection methods [23]. 

• Cross-region generalization and domain adaptation [16]. 

• Knowledge-guided deep models using hybrid data and knowledge [12]. 

• Benchmarking standards for RS ViTs [15]. 

 

3. Model Formulation and Key Techniques 

3.1 Formulation of the Proposed Model 

3.1.1 EfficientNetV2 
Definition: EfficientNetV2 is a convolutional neural network architecture that uses compound scaling to efficiently balance 

network depth, width, and input resolution, achieving high accu- racy with fewer parameters. 
 

Scaling Formulas: 

d = αϕ, w = βϕ, r = γϕ                                                                   (1) 
 

Terms Explanation: 

• d: Network depth (number of layers). 

• w: Network width (number of channels per layer). 

• r: Input resolution. 

• ϕ: Compound scaling coefficient. 

• α, β, γ: Constants that control depth, width, and resolution scaling. 

 

3.1.2 Squeeze-and-Excitation (SE) Attention 
Definition: SE Attention is a channel-wise feature recalibration mechanism that enhances in- formative features and 

suppresses less useful ones by learning adaptive weights for each channel. 

Formulas: 

• Squeeze (Global Pooling): 
 

 

Page 10 

https://doi.org/10.5281/zenodo.18099059


Citation: Dar, S. A., Tharuneswar, S. S., Atherya, K. V. K., Reddy, G. C. K., Yashwanth, T. R., & Jaswin, P. (2025). A Review Using Vision 
Transformer-Based Land Use and Land Cover Classification from Satellite Imagery. In ICON Journal of Engineering applications of 
artificial intelligence (Vol. 1, Number 6, pp. 5–17). https://doi.org/10.5281/zenodo.18099059 

 

 

• Excitation (Adaptive Weighting): 

sc = σ (W2 δ(W1zc))                                                                                                (3) 

• Channel Reweighting: 

X̂ c  = sc · Xc                                                                       (4) 
 

Terms Explanation: 

• Xc,i,j: Feature map value at channel c and spatial location (i, j). 

• zc: Global descriptor for channel c. 

• W1, W2: Learnable weight matrices. 

• δ: Non-linear activation function (ReLU). 

• σ: Sigmoid activation function to produce adaptive weights sc. 

• X̂c :  Reweighted channel output. 
 

3.1.3 Vision Transformer (ViT) Encoder 
Definition: ViT encodes images by dividing them into patches and applying self-attention to model global 

dependencies between patches. It captures long-range relationships better than CNNs. 

Formulas: 

• Patch Embedding: 

xp = Flatten(xi,j)E + P                                                                         (5) 
 

• Scaled Dot-Product Self-Attention: 
 

                                      Attention (Q, K, V) = softmax  
 

• Multi-Head Attention (MHA): 

                                MHA(X) = Concat(head1, . . . , headh)WO                      (7) 
 

• Feed-Forward Network (FFN): 
                                                FFN(X) = GELU(XW1 + b1)W2 + b2                        (8) 

• Residual Connections + LayerNorm: 

X′ = LayerNorm(X + MHA(X)), X′′ = LayerNorm(X′ + FFN(X′))         (9) 

Terms Explanation: 

• xi,j: Image patch at position (i, j). 

• E: Learnable embedding matrix. 

• P: Positional encoding. 

• Q, K, V: Query, Key, Value matrices. 

• dk: Dimension of key vectors. 

• headi: Individual attention head. 

• WO: Output projection matrix. 

• W1, W2, b1, b2: FFN weights and biases. 

• GELU: Gaussian Error Linear Unit activation. 

• LayerNorm: Normalization layer stabilizing training. 
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Σ 

c=1 

3.1.4 Combined Model Output 
Definition: The output is obtained by sequentially applying EfficientNetV2 for feature ex- traction, SE Attention for 

channel recalibration, and the ViT encoder for global dependency modeling. 
 

Ŷ = ViTEncoder (SE(EfficientNetV2(X)))                                                         (10) 
 

3.1.5 Loss Function (Cross-Entropy) 
Definition: Cross-Entropy Loss measures the difference between predicted probabilities and true labels for multi-class 

classification. 

                                                 C 

          LCE = − yc log(ŷ c)                                                                                         (11) 
 

 

Terms Explanation: 

• C: Number of classes. 

• yc: True label for class c. 

• ŷc :  Predicted probability for class c. 

4. Comparative Evaluation and Challenges 

4.1 Comparison Table 

Paper/Model Dataset(s) Results Limitations 

Hao et al. (2024) [12] UAV sub-meter 

imagery 

Swin-UNet OA 96.01% 

vs U-Net 91.9% 

CNNs weak on fine details; 

interpretability issues. 

BrownViTNet (2025) 

[10] 

Google, Bing, 

DOP20 imagery 

High brownfield detection 

accuracy 

Needs super-resolution 

augmentation; complex 

training. 

Channel-Spatial 

Transformer (2023) [14] 

AID, UC Merced Higher OA vs ResNet, 

DenseNet 

Sensitive to noise, requires 

fine-tuning. 

RS-ViT (2022) [20] EuroSAT, UC 

Merced 

Transfer learning boosts OA 

by 3–5% 

Limited to RGB; 

domain gap from 

ImageNet. 

SCSTIN (2023) [27] ZY1-02D 

hyperspectral 

OA >97%, strong 

spectral-spatial fusion 
Computationally heavy dual-

branch design. 

ViT-UNet (2023) [22] Gaofen wetlands 

imagery 

Precision 93.5%, IoU 

+4.1% over U-Net 

High compute cost; class 

boundary confusion. 

Multimodal Transformer 

(2023) [9] 

Sentinel-1 + 

Sentinel-2 

Better multi-label accuracy 

than baselines 

Complex fusion; 

synchronization issues. 

Efficient Segmentation 

(2023) [26] 

Sentinel-2 (cloud 

composites) 

mIoU 57.25% vs RF 39.7% Band sensitivity; temporal 

info lost. 

Fuzzy Swin (2023) [24] LISS-III Strong LU/LC change 

detection 

Threshold selection affects 

performance. 

Satellite ViT (2023) [1] EuroSAT + custom Improved OA and F1 over 

CNN baselines 

Lacks spectral adaptation for 

> 3 bands. 

Swin-based LU/LC 

(2023) [11] 

EuroSAT, AID Higher OA than ViT and 

CNNs 

Training instability, heavy 

GPU demand. 

Hybrid Transformer (2023) 

[21] 

Sentinel-2 OA >CNN baseline, efficient 

hybrid design 
Needs careful hyperparameter 

tuning. 

CVTNet (2024) [19] Sentinel-1 + 2 wetlands Outperformed RF, 

HybridSN 

Confuses bog vs fen classes. 
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Time-Series Transformer 

(2023) [18] 

Sentinel-2 temporal 

stacks 

OA +7% over CNNs; 

robust seasonal patterns 

Large compute; temporal 

gaps degrade results. 

Benchmarking (2024) 

[16] 

EuroSAT, Sentinel-2 V iTs > CNNs > RF 

consistently 
ViTs resource-heavy; RF 

poor generalization. 

Self-Supervised ViTs 

(2022) [25] 

BigEarthNet, 

Sentinel-2 

Stronger low-label accuracy Requires large-scale pretraining. 

Evaluation Study (2023) 

[15] 

EuroSAT, UC 

Merced 

ViTs robust across datasets; 

DeiT3 best 

ViTs suffer under small 

datasets. 

RadViT (2024) [23] Multispectral 

imagery 

OA SOTA on 15-band datasets Heavy spectral tokenization 

cost. 

Explainable Transformer 

(2023) [17] 

Sentinel-2 Attention maps aid 

explainability 

Adds model complexity; still 

partial. 

CNN vs ViT Comparison 

(2023) [13] 

EuroSAT, UC 

Merced 

ViTs outperform CNNs by 4–

6% 

CNNs faster, ViTs expensive. 

 

 

Figure 2: Architecture Diagram of EfficientNetV2 + SE Attention + ViT encoder 
 

4.2 Comparitive Analysis with Existing Model 
Vision Transformer-based Land Use and Land Cover (LULC) classification projects often use Sentinel Hub’s 

multispectral imagery. The proposed EfficientNetV2 + SE (Squeeze-and- Excitation) Attention + Vision Transformer 

(ViT) encoder model provides an effective frame- work when compared to existing models in the literature. Many prior 

models are either transformer- based architectures, such as ViT [20], Swin Transformer [11], and DeiT, or hybrid models 

that combine CNNs with attention modules, such as CVTNet [19] and SCSTIN [27]. These mod- 

els have been evaluated on datasets including EuroSAT, BigEarthNet, Indian Pines, wetlands datasets, and hyperspectral 

and multispectral data. They often perform well at capturing either spatial patterns or spectral relationships, but rarely 

manage to do both with the same efficiency and generalizability [16, 15]. 

The datasets used by current models differ greatly. For example, Swin Transformer models are mostly tested on EuroSAT, 

which has fewer classes and cleaner images [11]. In contrast, models like SCSTIN [27] and CVTNet [19] are tested on 

large hyperspectral datasets, which have hundreds of spectral bands and complex spatial patterns. Wetlands and urban 

brownfields are the main subject of CVTNet and BrownViTNet, but small class differences can make feature extraction hard. 

These datasets may not show multispectral data because they are domain- specific [16]. 

Transformers are the main component of many models, and token embeddings are used to process image patches for the 

purpose to capture global dependencies. even though this design is useful, it has issues with locality and texture biases 

that CNNs are able to perfectly capture [13]. Hybrid models try to overcome this by combining CNN-based feature 

extractors with attention mechanisms or transformer layers. Like, CVTNet [19] integrates channel and spatial attention 

mechanisms to improve feature extraction. on the other hand, SCSTIN [27] uses interactive fusion blocks to combine spatial 

and spectral information over different layers. 

Our model is strong because it combines transformer-based global reasoning, spectral at- tention, and a CNN backbone. 

The convolutional backbone, EfficientNetV2, gives high-quality feature extraction at lower computational costs and with 

minimum parameters. Most important in multispectral imagery, the SE attention mechanism improves the model’s capacity 

to high- light the most useful spectral bands. Long-range spatial relationships are recorded by the ViT encoder, leading to 

global reasoning beyond local patches [22]. 
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In comparision with Rad ViT, which highlights spectral relationships via tokenization [23], our approach incorporates 

convolutional layers at the beginning to improve spatial reasoning, making it more flexible in noisy or spectrally unclear 

conditions. Unlike to Swin Transformer architectures use shifted windows for local and global context [11], our model 

combines CNN- based locality with transformer-based global reasoning. And Models like ViT UNet [22] and self 

supervised ViTs [25] highly depends on pretraining, making them hard to implement in real-world scenarios with limited 

labeled data. 

Our model provides clear attention mechanisms while successfully addressing several is- sues at once, such as noise, 

spectral similarity, and small dataset sizes. Present models, such as CVTNet [19]and Swin Transformer [11] work well in 

particular domains but fail to apply across datasets with various spectral features. While some models show high accuracy—

Swin Transformer, for example, leading over 99% OA on EuroSAT [11], this performance can often be due to dataset 

characteristics rather than model generalizability. Our model shows 95% or greater accuracy across several multispectral 

datasets by using transfer learning with spectral attention. [24, 1]. 

The complexity of dataset specification and computational cost are common disadvantages of current models. While self-

supervised ViTs [25] depend on thorough unlabeled pretrain- ing, SCSTIN [27] needs continuous feature fusion. Multi-

modal transformers [9] increase the complexity and training requirements of the architecture by connecting through various 

sen- sors. The modular design of our model makes it simple to apply to different multispectral datasets [21]. 

In summary, the CNN and transformer architectures’ advantages have been combined in the EfficientNetV2 + SE Attention 

+ ViT encoder model. It has been designed to address prob- lems with spectral band importance, spatial patterns, and small 

data in multispectral LULC classification. It balances local and global feature extraction while providing effective training, 

interpretability, and flexibility. The model is suited to noise and ambiguity, which makes it suit- able for satellite imagery 

applications that need accurate, comprehensible, and more effective classification over a range of ecological and 

geographic contexts [14, 21, 16]. 

5. Architecture Comparison Table 

Criteria CNN-based Models [12, 26] ViT-based Models [20, 1, 

15] 

Hybrid CNN-ViT Models [10, 

19, 27] 

Input 

Compatibility 

Mostly RGB/multispectral; 

limited hyperspectral 

adaptation 

Flexible for RGB, multispectral, 

hyperspectral (with tokenization) 

Easily adapted to multispectral 

& hyperspectral (CNN extracts 

spectra, ViT captures global 

spatial) 

Strengths Efficient on small datasets 

Strong locality & 

edge/texture detection 

Lightweight, well-optimized 

Captures long-range 

dependencies 

Strong global reasoning 

Spectral-spatial fusion 

possible 

Combines local + global features 

Strong spectral-spatial 

integration Generalizes 

better across datasets 

Weaknesses Limited global context 

Struggles with spectral 

diversity 

Poor scalability on complex 

classes 

Data hungry High 

GPU/TPU 

requirements 

Training instability on small 

datasets 

Higher architectural complexity 

Requires careful tuning Slower 

inference than pure CNNs 

Computation 

Needs 

Low to medium (scales well with 

limited hardware) 

Very high (multi-GPU, large 

memory) 

Medium to high (depends on 

backbone + transformer depth) 

Interpretability Feature maps partially 

interpretable; class activation 

maps used 

Attention maps enhance 

interpretability; visualize 

important regions 

Best of both: attention maps + 

interpretable CNN filters 
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Dataset 

Suitability 
Works well on small RGB 

datasets (UC Merced [12], AID) 

Moderate on EuroSAT [16] 

Performs best on large 

multispectral datasets 

(BigEarthNet [25], 

EuroSAT [16]) 

Strong on temporal/large-

scale data 

Excels on hyperspec- 

tral/multimodal datasets (Indian 

Pines, ZY1-02D [27], Sentinel-

1+2 [19]) 

Example 

Models 
U-Net, ResNet-50, DenseNet, 

SegNet [12, 26] 

ViT, Swin Transformer, DeiT, 

RS-ViT [20, 1, 15] 

EfficientNetV2 + SE + ViT 

encoder (proposed) CVTNet 

[19], SCSTIN 

[27], BrownViTNet 

[10], ViT-UNet [22] 

 

6. Comparison of Datasets 

 
 

Figure 3: Architectural comparison 

 
Dataset Type Spectral 

Bands 

  

Resolution 

Acquisition 

Year 

Applications / Use Cases 

EuroSAT Multispectral 

(Sentinel-2) 

13 10–60 m 2015–2020 Land use and land cover classification; urban/rural mapping; 

environmental monitoring [16, 20] 

BigEarthNet Multispectral 

(Sentinel-2) 

13 10–60 m 2017–2018 Large-scale multi-label LULC classification; deep learning 

model training [25] 

UC Merced RGB 

(Aerial) 

3 0.3 m 2006 Scene classification; aerial image analysis; deep learning 

benchmarks [13] 

Sentinel-1 SAR 

(Synthetic 

Aperture Radar) 

1 10–20 m 2014–

ongoing 

Flood mapping; soil moisture estimation; disaster monitoring; 

combined analysis with Sentinel-2 [9, 19] 

Sentinel-2 Multispectral 13 10–60 m 2015–

ongoing 

Crop monitoring; land cover mapping; forest health 

analysis; cloud masking [16, 19, 21] 

LISS-III Multispectral 3–4 23.5 m 1999–

ongoing 

Land use/land cover change detection; agriculture monitoring; 

urban expansion studies [24] 

ZY1-02D Hyperspectral ¿100 30 m 2020–

ongoing 

Refined land cover classification; spectral-spatial 

analysis; environmental research [27] 

Custom 

Multispectral 

Varies by source Varies Varies Varies Domain-specific applications such as wetlands, 

brownfields, or high-resolution urban mapping using 

proprietary or combined datasets [10, 22] 

UAV Sub-Meter 

Imagery 

RGB + 

Multispectral 

Varies ¡1 m Ongoing Fine-grained urban mapping; precision agriculture; 

construction monitoring; disaster management [12] 

 

7. Conclusion 
A review of recent studies on the classification of land use and land cover (LULC) shows a significant change from CNN-

based models and normal machine learning to transformer-based architectures. [20, 15]. When big datasets and processing 

power are available, these models consistently outperform CNNs like U-Net [22], SegNet, and FCN [16]. 
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CNNs and attention mechanisms are combined in hybrid models to improve classification performance by combining 

global context with local texture information [19, 27]. The prob- lems caused by multispectral and hyperspectral imagery 

have been resolved by improvements in spectral tokenization, self-supervised pretraining, and multi-modal fusion, enabling 

better categorization in different kinds of environments [25, 9, 23]. 
 

Transformer-based models have disadvantages along with their benefits. Many models are difficult to implement in places 

with limited computational resources because they need a lot of processing power and large labeled datasets [24, 18]. 

Limited data, domain shifts, confusion over classifications, and interpretability are more challenges [1, 17]. Some of these 

problems can be reduced by hybrid and self-supervised methods, but they often add complexity and need careful tuning 

[21, 25]. 

By combining CNN-based local feature extraction with transformer-based global reason- ing, the proposed EfficientNetV2 

+ SE Attention + ViT encoder model solves these problems by focusing on spectral relationships through attention 

mechanisms [22]. This architecture is computationally efficient, responsive to different kinds of multispectral imagery, and 

adapted to noise, spectral ambiguity, and small datasets, achieving to high accuracy [24, 26]. The model provides a practical 

and scalable solution for real satellite-based LULC applications through the use of transfer learning and accessible attention 

maps [1, 4, 21]. 

Future research should focus on lightweight architectures, domain adaptation techniques, and explainable models to expand 

the use of transformer-based classification in remote sensing and maintain efficiency, accuracy, and interpretability in 

various environmental contexts [2, 14, 16]. 
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